Browse > Article
http://dx.doi.org/10.15207/JKCS.2019.10.4.139

A Study on the Strength and Stiffness of Multi-Stage Cubic Truss Unit Structures  

Choi, Jeongho (Kyungnam University, School of Mechanical Engineering)
Publication Information
Journal of the Korea Convergence Society / v.10, no.4, 2019 , pp. 139-145 More about this Journal
Abstract
This paper investigated the strength and stiffness of composite truss unit structures. The model used is a core-filled model combining the Kagome model and the cube truss model. The material properties used for the analysis are 304 stainless steel with elastic modulus of 193 GPa and yield stress of 215 MPa. The theoretical equation is derived from the relative elasticity relation of Gibson - Ashby ratio, the analysis was performed using Deform 3D, a commercial tool. In conclusion, the relative elasticity for this unit model correlates with 1.25 times the relative density and constant coefficient, elasticity is inversely proportional to pore size. The relative compressive strength has a correlation with relative density of 1.25 times. Proof of this is a real experiment, the derived theoretical relationship should further consider mechanical behavior such as bending and buckling. In the future, it is hoped that the research on the elasticity and the stress according to the structure of the three-dimensional space will be continued.
Keywords
Truss; Open Cell Structure; Hyper Cube; Sandwich Core; Unit cell;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 L. J. Gibson, M. F. Ashby. & B. A. Harley. (2010), Cellular Materials in Nature and Medicine, Cambridge University Press. ISBN 978-0-521-19544-7 hardback
2 Hexcel Corpporation. (2016), HexWeb Honeycomb Attributes and Propertioes. Technical manual [Online]. https://www.hexcel.com/Products/Honeycomb/
3 R. Sterling. (2013). Periodic cellular materials. Technical manual [Online]. http://www.cellularmaterials.net/
4 D. J. Sypeck & H. N. G. Wadley. (2001), Multifunctional microtruss laminates: Textile synthesis and properties, Journal of Materials Research, 16(3), 890-897. DOI : 10.1557/JMR.2001.0117   DOI
5 D. J. Sypeck. (2002, February). Constructed cellular metals-Processing and properties of lightweight cellular metals and structures. proceedings of a symposium held during the 2002 TMS annual meeting in Seattle, Washington, (pp. 35-45). USA : TMS
6 H. N. G. Wadley. (2006), Multifunctional periodic cellular metals, Philosophical Transactions of the Royal Society A, 364(1838), 31-68. DOI : 10.1098/rsta.2005.1697.   DOI
7 G. Zhang, B. Wang, L. Ma, J. Xiong & L. Wu. (2013), Response of sandwich structures with pyramidal truss cores under the compression and impact loading, Composite Structures, 100, 451-463. DOI : 10.1016/j.compstruct.2013.01.012   DOI
8 M. R. M. Rejab & W. J. Cantwell. (2013), The mechanical behaviour of corrugated-core sandwich panels, Composites Part B: Engineering, 47, 267-277. DOI : 10.1016/j.compositesb.2012.10.031   DOI
9 J. Choi & T. Chae. (2015), Effective stiffness and effective compressive yield strength for unit-cell model of complex truss, International Journal of Mechanics and Materials in Design, 11(1), 91-110. DOI : 10.1007/s10999-014-9267-9   DOI
10 G. Zhang, B. Wang, L. Ma, J. Xiong & L. Wu. (2013), Response of sandwich structures with pyramidal truss cores under the compression and impact loading, Composite Structures, 100, 451-463 . DOI : 10.1016/j.compstruct.2013.01.012   DOI
11 T. L. Nguyen & D. Han. (2017) Texture Mapping of a Bridge Deck Usiing UAV Images. Journal of Digital Contents Society, 18(6), 1041-1047. DOI : 10.9728/dcs.2017.18.6.1041   DOI
12 S. Bae1, D.Kwag & E. Park. (2015) The Study of the Aviation Industrial Technology Convergence through Patent analysis, Journal of the Korea Convergence Society, 6(5), 219-225 DOI : 10.15207/JKCS.2015.6.5.219   DOI
13 J. Kim, S. Ha & Y. Moon. (2017) A Study on Automatic Precision Landing for Small UAV's, Industrial Application, 7(3), 27-36 DOI : 10.22156/CS4SMB.2017.7.3.027   DOI
14 MatWeb. (2017). 304 stainless steel. Material Property Data. [Online] http://matweb.com/search/DataSheet.aspx?MatGUID=abc4415b0f8b490387e3c922237098da
15 J. Hwang. (2017). Application of seismic-sound Insulation Panel Using Kagome Truss Structure, Review of Architecture and Building Science, 61(3), 58-62. ISSN : 1225-1666
16 L. Wang, K. Saito, Y. Gotou & Y. Okabe. (2017). Design and fabrication of aluminum honeycomb structures based on origami technology, Journal Sandwich and Materials, 0(00), 1-19. DOI : 10.1177/1099636217714646   DOI
17 K.P. Dharmasena,, H.N.G. Wadley, Z. Xue & J. W. Hutchinson. (2008). Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading, International Journal of Impact Engineering, 35, 1063-1074. DOI : 10.1016/j.ijimpeng.2007.06.008   DOI
18 A. J. Wang & D. L. McDowell. (2004). In-plane stiffness and yield strength of periodic metal honeycombs, Journal of Engineering Materials and Technology, 126(2), 137-156. DOI : 10.1115/1.1646165   DOI
19 M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson & J. W. Hutchinson, H.N.G. Wadley. (2002), Metal Foams: a design guide, Materials & Design, 23(1), 119. DOI : 10.1016/s0261-3069(01)00049-8   DOI
20 L. J. Gibson & M. F. Ashby. (1999). Cellular Solids-Structure and Properties, Cambridge University Press. DOI : 10.1002/crat.2170250912