• Title/Summary/Keyword: Multi-material Design

Search Result 584, Processing Time 0.032 seconds

Layout optimization for multi-platform offshore wind farm composed of spar-type floating wind turbines

  • Choi, E.H.;Cho, J.R.;Lim, O.K.
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.751-761
    • /
    • 2015
  • A multi-platform offshore wind farm is receiving the worldwide attention for the sake of maximizing the wind power capacity and the dynamic stability at sea. But, its wind power efficiency is inherently affected by the interference of wake disturbed by the rotating blades, so its layout should be appropriately designed to minimize such wake interference. In this context, the purpose of this paper is to introduce a layout optimization for multi-platform offshore wind farm consisted of 2.5MW spar-type floating wind turbines. The layout is characterized by the arrangement type of wind turbines, the spacing between wind turbines and the orientation of wind farm to the wind direction, but the current study is concerned with the spacing for a square-type wind farm oriented with the specific angle. The design variable and the objective function are defined by the platform length and the total material volume of the wind farm. The maximum torque loss and overlapping section area are taken as the constraints, and their meta-models expressed in terms of the design variable are approximated using the existing experimental data and the geometry interpretation of wake flow.

Analyzing the Weight of Assessment Criteria in Korea Green Building Certification System - Focused on Certification Standards for Multi-unit Apartment Projects - (국내 친환경 건축물 인증제도 평가항목의 중요도 분석 - 공동주택 인증심사기준 중심으로 -)

  • Choi, Yeo-Jin;Lhee, Sang-Choon
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.83-90
    • /
    • 2012
  • Over the world, social demands and concerns of energy and resource depletions and environmental conservation have resulted in many researches and applications on sustainable development and construction. In order to support these demands and concerns, international green building certification systems such as LEED(Leadership in Energy and Environmental Design) and BREEAM(Building Research Establishment Environmental Assessment Method) were developed. In Korea, the green building certification system was introduced in 2000 and widely applied to all types of new buildings in order to induce the diffusion of sustainable buildings on May, 2010. This paper investigates the importance of assessment criteria on multi-unit apartment projects among certification rating systems using the AHP(Analytic Hierarchy Process) method and suggests a new direction on certification assessment standards. For applying the AHP method, the survey of staffs in green building certification consulting companies and architectural design companies was conducted via e-mail. As a result, criteria like energy, indoor environment, land use, pollution control, and ecological environment among 9 main ones turned out important on assessing green building certification at multi-unit apartment projects, while criteria like water resource, transportation, maintenance management, and material and resource did relatively unimportant.

3-Dimensional Circuit Device Fabrication for Improved Design Freedom based on the Additive Manufacturing (설계자유도 향상을 위한 부가가공 기반의 3차원 회로장치 제작)

  • Oh, Sung Taek;Jang, Sung Hyun;Lee, In Hwan;Kim, Ho Chan;Cho, Hae Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1077-1083
    • /
    • 2014
  • Multi-material Additive Manufacturing (AM) is being focused to apply for direct manufacturing of a product. In this paper, a three-dimensional circuit device (3DCD) fabrication technology based on the multi-material AM technology was proposed. In contrast with conventional two-dimensional Printed Circuit Board (PCB), circuit elements and conducting wires of 3DCD are placed in threedimensional configuration at multiple layers of the structure. Therefore, 3DCD technology can improve design freedom of an electronic product. In this paper, 3DCD technology is proposed based on AM technology. Two types of 3DCD fabrication systems were developed based on the Stereolithography and the Fused Deposition Modeling technologies. And the 3DCD samples which have same function were fabricated, successfully.

Design and Manufacture of Multi-layer VCO by LTCC (저온 동시소성 세라믹을 이용한 적층형 VCO의 설계 및 제작)

  • Park, Gwi-Nam;Lee, Heon-Yong;Kim, Ji-Gyun;Song, Jin-Hyung;Rhie, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.291-294
    • /
    • 2003
  • The circuit substrate was made from the Low Temperature Cofired Ceramics(LTCC) that a $\varepsilon_\gamma$ was 7.8. Accumulated Varactor and the low noise transistor which were a Surface Mount Device-type element on LTCC substrate. Let passive element composed R, L, C with strip-line of three dimension in the multilayer substrate circuit inside, and one structure accumulate band-pass filter, resonator, a bias line, a matching circuit, and made it. Used Screen-Print process, and made Strip-line resonator. A design produced and multilayer-type VCO(Voltage Controlled Oscillator), and recognized a characteristic with the Spectrum Analyzer which was measurement equipment. Measured multilayer structure VCO is oscillation frequency 1292[MHz], oscillation output -28.38[dBm], hamonics characteristic -45[dBc] in control voltage 1.5[V], A phase noise is -68.22[dBc/Hz] in 100 KHz offset frequency. The oscillation frequency variable characteristic showed 30[MHz/V] characteristic, and consumption electric current is approximately 10[mA].

  • PDF

A Study on How to Minimize the Luminance Deviation of AC-LED Lighting (교류 LED 조명의 빛 밝기 편차를 최소화하는 방법에 대한 연구)

  • Dong Won Lee;Bong Hee Lee;Byungcheul Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.255-260
    • /
    • 2023
  • In order to spread LED lighting, LED lighting technology directly driven by alternating current (AC) commercial power has recently been introduced. Since current does not flow at a voltage lower than the threshold voltage of the LED, a non-conductive section occurs in the current waveform, and the higher the threshold voltage of the LED, the more discontinuous current waveforms are generated. In this paper, multi-LED modules are connected in series so that the threshold voltage can be adjusted according to the number of LED modules. A small number of LED modules are driven at a low instantaneous rectified voltage, and a large number of LED modules are driven at a high instantaneous rectified voltage to lengthen the overall lighting time of AC-LED lighting, thereby minimizing the luminance deviation of AC-LED lighting. In addition, the load current flowing through the LED module is adjusted to be the same as the design current even at the maximum rectified voltage higher than the design voltage, so that the light brightness of the LED module is kept constant. Therefore, even if the rectified voltage applied to the LED module changes, the AC-LED lighting in which the light brightness is constant and the luminance deviation is minimal has been realized.

Decomposition-based Process Planning far Layered Manufacturing of Functionally Gradient Materials (기능성 경사복합재의 적층조형을 위한 분해기반 공정계획)

  • Shin K.H.;Kim S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.223-233
    • /
    • 2006
  • Layered manufacturing(LM) is emerging as a new technology that enables the fabrication of three dimensional heterogeneous objects such as Multi-materials and Functionally Gradient Materials (FGMs). Among various types of heterogeneous objects, more attention has recently paid on the fabrication of FGMs because of their potentials in engineering applications. The necessary steps for LM fabrication of FGMs include representation and process planning of material information inside an FGM. This paper introduces a new process planning algorithm that takes into account the processing of material information. The detailed tasks are discretization (i.e., decomposition-based approximation of volume fraction), orientation (build direction selection), and adaptive slicing of heterogeneous objects. In particular, this paper focuses on the discretization process that converts all of the material information inside an FGM into material features like geometric features. It is thus possible to choose an optimal build direction among various pre-selected ones by approximately estimating build time. This is because total build time depends on the complexity of features. This discretization process also allows adaptive slicing of heterogeneous objects to minimize surface finish and material composition error. In addition, tool path planning can be simplified into fill pattern generation. Specific examples are shown to illustrate the overall procedure.

Driving Characteristic of L1-B4 Type Ultrasonic Linear Motor by Varying the Size of Elastic Material (탄성체의 크기 변화에 따른 L1-B4형 초음파 리니어 모터의 구동 특성)

  • Kim, Hang-Sik;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.93-96
    • /
    • 2004
  • An ultrasonic linear motor was composed of a slider and a stator vibrator including piezoelectric material and elastic material. The ultrasonic linear motors mainly consist of an ultrasonic vibrator which generates elliptical oscillations. L1-B4 ultrasonic linear motor use longitudinal and bending multi-vibration. In order to design stators which has high efficiency and driving characteristics, The finite element method was used to optimize dimension of ultrasonic vibrator and direction of vibratory displacement. stator vibrator of respectively width 3, 5, 7[mm] was fabricated and experimented. as results When width was 5[mm], the driving characteristics was good.

  • PDF

Pedagogical Issues of Performance Oriented Digital Design - Focused on Kinetic Facade Design - (성능지향적 디지털 설계의 교육방법론 연구 - 키네틱 파사드 설계과정을 중심으로 -)

  • Jang, Do-Jin;Kim, Sung-Ah
    • Journal of KIBIM
    • /
    • v.5 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • Existing pedagogical issues of digital design including BIM have been focused not on potential of Digital Design but on skills of BIM or digital modeling tool. Kinetic facade can move or change material state to react surrounding environment conditions. It is a suitable design object for teaching principle of Performance Oriented Digital Design. Variables of movements affect multi-criteria of performances of kinetic facade, so different design approach from fixed facade design should be explored. Kinetic facade design process is proposed to study pedagogical issues of Performance Oriented Digital Design in this paper. Through Kinetic facade design process, students can understand conditions, variables, and performances of digital design.

Approximate Optimization with Discrete Variables of Fire Resistance Design of A60 Class Bulkhead Penetration Piece Based on Multi-island Genetic Algorithm (다중 섬 유전자 알고리즘 기반 A60 급 격벽 관통 관의 방화설계에 대한 이산변수 근사최적화)

  • Park, Woo-Chang;Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.33-43
    • /
    • 2021
  • A60 class bulkhead penetration piece is a fire resistance system installed on a bulkhead compartment to protect lives and to prevent flame diffusion in a fire accident on a ship and offshore plant. This study focuses on the approximate optimization of the fire resistance design of the A60 class bulkhead penetration piece using a multi-island genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class bulkhead penetration piece. For approximate optimization, the bulkhead penetration piece length, diameter, material type, and insulation density were considered discrete design variables; moreover, temperature, cost, and productivity were considered constraint functions. The approximate optimum design problem based on the meta-model was formulated by determining the discrete design variables by minimizing the weight of the A60 class bulkhead penetration piece subject to the constraint functions. The meta-models used for the approximate optimization were the Kriging model, response surface method, and radial basis function-based neural network. The results from the approximate optimization were compared to the actual results of the analysis to determine approximate accuracy. We conclude that the radial basis function-based neural network among the meta-models used in the approximate optimization generates the most accurate optimum design results for the fire resistance design of the A60 class bulkhead penetration piece.

A Study on Thin-Film Silicon Solar Cells with Multi-Architecture Etching Technique to Improve Light Trapping (광 포획 향상을 위한 다중 아키텍처 식각 기술을 적용한 박막 실리콘 태양전지에 관한 연구)

  • Hyeong Gi Park;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.337-344
    • /
    • 2024
  • This work focuses on improving the light-harvesting efficiency of thin-film silicon solar cells through innovative multi-architecture surface modifications. To create a regular optical structure, a lithographic process was performed to form it on a glass substrate through various etching processes, from Etch-1 to Etch-3. AZO was deposited on top of the structures and re-etched to create a multi-architectural surface. These surface-modified structures improved the light absorption and overall performance of the solar cell through changes in optical and physical properties, which we will analyze. In addition, we investigated the effect of post-cleaning on the etched glass structures through EDX analysis to understand the mechanism of the etching action. The results of this study are expected to provide important guidelines for the design and fabrication of solar cells and other photovoltaic devices.