• Title/Summary/Keyword: Multi-level switching

Search Result 177, Processing Time 0.052 seconds

The study of New multi-level inverter with simple structure (간단한 구조를 갖는 새로운 방식의 멀티 레벨 인버터에 관한 연구)

  • Lee, Byung-Jin;Jung, Byung-Chang;Ru, Chul-Ro;Lee, Seong-Ryong;Han, Woo-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1963-1965
    • /
    • 1998
  • In this paper, a new simplified configuration for a multi-level PWM inverter is proposed. The proposed inverter consists of an auxiliary circuit with one switching device, and 3 phase full-bridge inverter. The proposed inverter, in spite of reduction of the switching devices, offers characteristics similar to the NPC(Neutral - point - clamped)- PWM inverter. Also, since the reduction of the switching devices, the control strategy is simplified. And switching loss is reduced. In addition to, it is possible that reliable DC level voltage than former multi-level inverter. And load power application is same to conventional NPC-PWM inverter. The performance of the system is verified by simulation. In this paper, show the simulation result of the single phase full bridge inverter application.

  • PDF

Method of Multi-level Switching Function based on FPGA (FPGA를 이용한 멀티레벨 스위칭 함수 구현 방법)

  • Lee, Hwa-Chun;Song, Gee-Seok;Park, Sung-Jun;Lee, Min-Jung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.195-198
    • /
    • 2008
  • Recently, with the growth of photovoltaic system, many researchers and companies have concerned about the multi-level inverter which has an efficiency of boosting voltage. This paper implements a multi-level switching function based on the FPGA. It is efficient to implement the switching function based on the FPGA as a program able logic device. In order to implementation the switching function, this paper synchronized with the microprocessor through the clock and synchronous signal from the microprocessor.

  • PDF

Low frequency Multi-level Switching Strategy based on Phase-Shift Control (위상 변위제어기법을 이용한 저주파 다중레벨 스위칭 방식)

  • Song, Sung-Geun;Lee, Sang-Hun;Nam, Hae-Kon;Park, Sung-Jun;Lee, Man-Hyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.520-528
    • /
    • 2006
  • In this paper, we proposed the electric circuit using one common arm of H-Bridge Inverters to reduce the number of switching component in multi-level inverter combined with H-Bridge Inverters and Transformers. and furthermore we suggested the new multi-level PWM inverter using PWM level to reduce THD(Total Harmonic Distortion). and we used the phase-shift switching method that can be same rate of usage at each transformer. Also, we tested the proposed prototype 9-level inverter to clarify the proposed electric circuit and reasonableness of control signal for the proposed multi-level PWM inverter.

A Novel Multi-Level Type Sustaining Driver for AC Plasma Display Panel (새로운 방식의 멀티레벨 AC PDP 구동장치)

  • Jung Woo-Chang;Kang Kyung-Woo;Yoo Jong-Gul;Ko Jong-Sun;Hong Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.425-429
    • /
    • 2004
  • A new multi-level type energy recovery sustaining driver for AC PDP(Plasma Display Panel) is proposed in this paper. The multi-level driver has been developed to reduce the voltage stress on switching elements. Comparing the proposed driver with the conventional multi-level driver, 4 switching elements, 4 diodes, and two auxiliary capacitors are eliminated in the viewpoint of circuit structure. Moreover, the voltage stress on switching elements is more reduced and the sustain period is extended. To verify the validity of the proposed energy recovery circuit, computer simulations using PSpice program are carried out.

  • PDF

The Analysis of Conduction and Switching Losses in Multi-Level Inverter System (멀티레벨 인버터 시스템의 전도손실과 스위칭손실 해석)

  • 金 兌 珍;姜 岱 旭;;玄 東 石
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.111-120
    • /
    • 2002
  • The multi-level inverter system is very promising in ac drives, when both reduced harmonic contents and high power are required. In case of multi-level inverter system, the loss of switch devices cannot be analyzed by conventional methods. The reason is that the loss of each the switch device is different from one another unlike 2-level. In this paper, a simple and accurate method of computing conduction and switching loss is proposed for multi-level inverter system. The validity of the proposed method is proven for 3-level and 4-revel diode clamped inverter system.

A winding design of Tap Level Converter (Tap Level 제어 전력 변환기의 권선설계)

  • Chun J.H.;Lee H.W.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.53-55
    • /
    • 2006
  • In this paper discusses winding methode of single phase AC-DC reversible power converter The reversible power converter driven by multi Tap winding at both side switching control. It has a advantage that simple drive of main switching device. and obtain load current of good quality without filter circuit and free from noise or isolation for lower switching frequency. In this research, study on current type converter and inverter circuit that consist for possibility of AC-DC/DC-AC multi-level reversible converter.

  • PDF

Novel Multi-Level PWM Inverter Using The Common Arm (공통암을 이용한 새로운 다중레벨 PWM 인버터)

  • .Song S.G;Yu tao;Lee S.H.;Cho S.E.;Moon C.J.;Kim C.U;Park S.J.
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.4
    • /
    • pp.195-200
    • /
    • 2005
  • In this paper, we proposed the electric circuit using one common arm of H-Bridge Inverters to reduce the number of switching component in multi-level inverter combined with H-Bridge Inverters and Transformers. and furthermore we suggested the new multi-level PWM inverter using PWM level to reduce THD(Total Harmonic Distortion). and we used the switching method that can be same rate of usage at each transformer. Also, we tested the proposed prototype 9-level inverter to clarify the proposed electric circuit and reasonableness of control signal for the proposed multi-level PWM inverter.

An Improved SPWM Strategy to Reduce Switching in Cascaded Multilevel Inverters

  • Dong, Xiucheng;Yu, Xiaomei;Yuan, Zhiwen;Xia, Yankun;Li, Yu
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.490-497
    • /
    • 2016
  • The analysis of the switch status of each unit module of a cascaded multi-level inverter reveals that the working condition of the switch of a chopper arm causes unnecessary switching under the conventional unipolar sinusoidal pulse width modulation (SPWM). With an increase in the number of cascaded multilevel inverters, the superposition of unnecessary switching gradually occurs. In this work, we propose an improved SPWM strategy to reduce switching in cascaded multilevel inverters. Specifically, we analyze the switch state of the switch tube of a chopper arm of an H-bridge unit. The redundant switch is then removed, thereby reducing the switching frequency. Unlike the conventional unipolar SPWM technique, the improved SPWM method greatly reduces switching without altering the output quality of inverters. The conventional unipolar SPWM technique and the proposed method are applied to a five-level inverter. Simulation results show the superiority of the proposed strategy. Finally, a prototype is built in the laboratory. Experimental results verify the correctness of the proposed modulation strategy.

Operation Characteristic of Transless type Grid-connected Inverter using Multi-level Switching circuit (멀티레벨 스위칭 회로를 이용한 트렌스리스형 계통 연계 인버터의 동작 특성)

  • Kim, Ju-Yong;No, Kwae-Hyeop;Jung, Tae-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.916-917
    • /
    • 2008
  • In this paper, Switching damage of switches that is used to proposed power conversion system is reduced by soft switching way. dissipation by part resonance and my resonance stress for resonance of resonance circuit are decreased. Is acted by conversion system high effectiveness. Have following characteristic. Design snubber circuit that is used by switch protection in existent hard work rate Topology by resonant circuit for sogt switching, circuit structure was simple and control system is easy. Also, Can generate free output voltage by multi level Tuesday of output that use individuation Power Cell's Phase Shift PWM, and Low-end switching frequency the harmonic is few.

  • PDF

Switching-Level Operation Analysis of MMC-based Back-to-Back Converter for HVDC Application (HVDC 적용을 위한 MMC 기반 Back-to-Back 컨버터의 스위칭레벨 동작분석)

  • Hong, Jung-Won;Jeong, Jong-Kyou;Yoo, Seong-Hwan;Choi, Jong-Yun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1240-1248
    • /
    • 2013
  • This paper describes a switching-level operation analysis of BTB(Back-To-Back) converter for HVDC(high voltage DC) application based on MMC(modular multi-level converter). A switching-level operation analysis for BTB converter is very important to understand the converter operation in detail and check the voltage and current transients in each components. However, the development of switching-level simulation model for the actual size BTB Converter is very difficult because the MMC normally has more than 150 sub-modules for each arm. So, a switching level simulation model for the 11-level MMC-based BTB converter was developed with PSCAD/EMTDC software, which has 12 sub-modules for the positive arm and another 12 sub-modules for the negative arm. The DC-voltage balance algorithm, the circulating-current reduction algorithm, the harmonic reduction algorithm, and the redundancy operation algorithm were included in this simulation model. The developed simulation model can be utilized to analyze the MMC-based BTB converter for HVDC application in switching level and to develop the protection scheme for the MMC-based BTB converter for HVDC application.