• Title/Summary/Keyword: Multi-level simulation

Search Result 597, Processing Time 0.051 seconds

Simulation for Automatic Diagnosis of Defect in Media Transport System (유연매체 이송 시스템의 고장 진단을 위한 Simulation)

  • Lee, Nam-Hoon;Lyu, Sang-Heon;Koo, J.C.;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.564-568
    • /
    • 2005
  • As functional requirements of automatic office machines like printers, ATMs, copying machines are on a trend for the higher speed and precision, extensive technical advances are being developed and implemented in the industry. Media transport system is a device to convey a sheet of paper in ATMs and printers. The stability of media transport system is a matter of concern as their operating throughput rapidly increases. And defects of belts or rollers in a transport system directly affect the level of stability of the system. Therefore an automatic diagnostic system for predicting various defects is necessary for the stable operation of the media transport system. A simulation based on multi-body dynamics has been done for a feasibility study of a system design for the defect anticipation.

  • PDF

A Study on the Multi-carrier PWM Methods for Voltage Balancing of Flying Capacitor in the Flying Capacitor Multi-level Inverter (플라잉 커패시터 멀티레벨 인버터의 플라잉 커패시터 전압 균형을 위한 멀리 캐리어 PWM 기법에 대한 연구)

  • Jin, Bum-Seung;Kim, Tae-Jin;Kang, Dae-Wook;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.298-301
    • /
    • 2005
  • The flying capacitor voltage control of the flying capacitor multi-level inverter (FCMLI) is very important for safe operation. The voltage unbalancing of flying capacitors caused serious problems in safety and reliability of system. In the FCMLI, balancing problem of the flying capacitor has its applications limited. The voltage unbalance is occurred by the difference of each capacitors charging and discharging time applied to FCMLI. This paper investigates and analyzes multi-carrier PWM methods to solve capacitor voltage balancing problem. The Phase-Shift PWM (PSPWM) method that is commonly used, The Modified Carrier-Redistribution PWM (MCRPWM) method and The Saw-Tooth-Rotation PWM (STRPWM) method are discussed and compared with respect to switching state, balancing voltage of capacitors and output waveform. These three PWM methods are analyzed by using a flying capacitor three-level inverter and provided result through simulation. Finally, the harmonics about the output voltages of their methods are compared using the harmonic distortion factor (HDF).

  • PDF

A Study on the 0.5$\mu\textrm{m}$ Dual Gate High Voltage Process for Multi Operation Applications (Multi Operation을 위한 0.5$\mu\textrm{m}$Dual Gate 고전압 공정에 관한 연구)

  • 송한정;김진수;곽계달
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.463-466
    • /
    • 2000
  • According to the development of the semiconductor micro device technology, IC chip trends the high integrated, low power tendency. Nowadays, it can be showed the tendency of single chip in system level. But in the system level, IC operates by multi power supply voltages. So, semiconductor process is necessary for these multi power operation. Therefore, in this paper, dual gate high voltage device that operate by multi power supply of 5V and 20V fabricated in the 0.5${\mu}{\textrm}{m}$ CMOS process technology and its electrical characteristics were analyzed. The result showed that the characteristics of the 5V device almost met with the SPICE simulation, the SPICE parameters are the same as the single 5V device process. And the characteristics of 20V device showed that gate length 3um device was available without degradation. Its current was 520uA/um, 350uA/um for NMOS, PMOS and the breakdown voltages were 25V, 28V.

  • PDF

A Study on Muti-Level Type Charging Technique for Ocean Facility (해양 시설물용 다중 레벨 방식 충전기법에 관한 연구)

  • Oh, Jin-Seok;Kwak, Jun-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.906-913
    • /
    • 2010
  • Recently, lots of researches are carried out to develop hybrid power generation system for ocean facility. Normally, the stand-alone type power system is used in the ocean facility, which is influenced by weather condition. To improve the efficiency, a various charging strategy with switching algorithm has been studied. In this paper, the power system using multi-level type is proposed. The simulation results based on actual data of photovoltaic and wave hybrid power system are presented. The results show that the rate of charging time is increased 5~11% and 7~47% respectively to compare the conventional technique.

Innovative Modeling and Simulation of Reacting Flow with Complex Confined Boundaries

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.311-319
    • /
    • 2008
  • We present an innovative method of multi physics application involving energetic materials. Energetic materials are related to reacting flows in extreme environments such as fires and explosions. They typically involve high pressure, high temperature, strong shock waves and high strain rate deformation of metals. We use an Eulerian methodology to address these problems. Our approach is naturally free from large deformation of materials that make it suitable for high strain rate multi-material interacting problems. Furthermore we eliminate the possible interface smearing by using the level sets. We heave devised a new level set based tracking framework that can elegantly handle large gradients typically found in reacting gases and metals. We show several work-in-progress application of our integrated framework.

  • PDF

The Effect Analysis on the Container Terminal Productivity according to Combination of YT Pooling and Dispatching Rules (이송장비 풀링(Pooling)과 우선순위 규칙(Dispatching rule) 조합에 따른 컨테이너 터미널 생산성 효과분석)

  • Chun, Seoyoung;Yoon, SungWook;Jeong, Sukjae
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.3
    • /
    • pp.25-40
    • /
    • 2019
  • Today, container terminals are fiercely competing to attract an increasing number of containers. As a way to improve terminal productivity, this study proposes two dispatching rules for yard truck allocation priorities. First, Multi-Attribute Dispatching Rule(MADR) is an allocation method to calculate the weighted sum of multiple factors affecting container terminal productivity and priority them. Especially, the workload of the quay crane was considered one of the factors to reduce the residence time of the ship. Second, Cycling Dispatching Rule(CDR) is the effective way to increase the number of double cycles that directly affect terminal productivity. To identify the effects of combinations of pooling and dispatching, a comparative experiments was performed on 8 scenarios that combined them. A simulation environment has been developed for experiments and the results have demonstrated that the combination of terminal level pooling and Multi-attribute Dispatching could be an excellent combination in KPIs consisting of GCR and delayed departure of ships, etc.

Seismic response analysis of buried oil and gas pipelines-soil coupled system under longitudinal multi-point excitation

  • Jianbo Dai;Zewen Zhao;Jing Ma;Zhaocheng Wang;Xiangxiang Ma
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.239-249
    • /
    • 2024
  • A new layered shear continuum model box was developed to address the dynamic response issues of buried oil and gas pipelines under multi-point excitation. Vibration table tests were conducted to investigate the seismic response of buried pipelines and the surrounding soil under longitudinal multi-point excitation. A nonlinear model of the pipeline-soil interaction was established using ABAQUS finite element software for simulation and analysis. The seismic response characteristics of the pipeline and soil under longitudinal multi-point excitation were clarified through vibration table tests and simulation. The results showed good consistency between the simulation and tests. The acceleration of the soil and pipeline exhibited amplification effects at loading levels of 0.1 g and 0.2 g, which significantly reduced at loading levels of 0.4 g and 0.62 g. The peak acceleration increased with increasing loading levels, and the peak frequency was in the low-frequency range of 0 Hz to 10 Hz. The amplitude in the frequency range of 10 Hz to 50 Hz showed a significant decreasing trend. The displacement peak curve of the soil increased with the loading level, and the nonlinearity of the soil resulted in a slower growth rate of displacement. The strain curve of the pipeline exhibited a parabolic shape, with the strain in the middle of the pipeline about 3 to 3.5 times larger than that on both sides. This study provides an effective theoretical basis and test basis for improving the seismic resistance of buried oil and gas pipelines.

The Implementable Functions of the CoreNet of a Multi-Valued Single Neuron Network (단층 코어넷 다단입력 인공신경망회로의 함수에 관한 구현가능 연구)

  • Park, Jong Joon
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.593-602
    • /
    • 2014
  • One of the purposes of an artificial neural netowrk(ANNet) is to implement the largest number of functions as possible with the smallest number of nodes and layers. This paper presents a CoreNet which has a multi-leveled input value and a multi-leveled output value with a 2-layered ANNet, which is the basic structure of an ANNet. I have suggested an equation for calculating the capacity of the CoreNet, which has a p-leveled input and a q-leveled output, as $a_{p,q}={\frac{1}{2}}p(p-1)q^2-{\frac{1}{2}}(p-2)(3p-1)q+(p-1)(p-2)$. I've applied this CoreNet into the simulation model 1(5)-1(6), which has 5 levels of an input and 6 levels of an output with no hidden layers. The simulation result of this model gives, the maximum 219 convergences for the number of implementable functions using the cot(${\sqrt{x}}$) input leveling method. I have also shown that, the 27 functions are implementable by the calculation of weight values(w, ${\theta}$) with the multi-threshold lines in the weight space, which are diverged in the simulation results. Therefore the 246 functions are implementable in the 1(5)-1(6) model, and this coincides with the value from the above eqution $a_{5,6}(=246)$. I also show the implementable function numbering method in the weight space.

A Study on Squeal Noise Simulation considering the Friction Material Property Changes according to Temperature and Pressure in an Automotive Brake Corner Module (차량용 브레이크 코너 모듈에서 마찰재의 온도와 압력에 따른 물성치 변화를 고려한 스퀼 소음 해석 연구)

  • Cho, Hojoon;Kim, Jeong-Tae;Chae, Ho-Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.546-552
    • /
    • 2012
  • This paper is a study on squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material. For this, data of pressure and temperature dependent material properties of lining is achieved by using lining data base and exponential curve fit. Complex eigenvalue analysis is performed for predicting squeal noise frequency and instability and chassis dynamo test is performed for achieving squeal noise frequency, sound pressure level, occurrence temperature & pressure. Initial multi models are composed for considering complex interface conditions such as pad ear-clip, piston-housing and guide pin-torque member. The simulation result of base models is compared with the test result. Squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material is performed and analyzed using multi models. And additional condition is disc material property variation. Entire simulation conditions are combined and analyzed. Finally, this paper proposes direction of the warm squeal noise model.

  • PDF

Multi-level Modeling and Simulation for Sustainable Energy (대체 에너지의 다중레벨 모델링과 시뮬레이션)

  • van Duijsen, P.J.;Oh, Yong-Taek
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • Modeling and simulation for Green Energy depends largely on the type of system under investigation. The topics are very wide ranging from semiconductor physics (solar), electrical motor/generator (wind turbines), power electronics (grid connections) to typical control strategies. To correctly model these technologies requires a broad set of models and various simulation techniques. To further refine or detail the simulation the modeling has to be performed on a specific level, being system, circuit or component level. Combinations of several levels allows gradually improving the validity of the overall model against available parameters and model equations.

  • PDF