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Abstract 

 
We present an innovative method of multi physics 

application involving energetic materials. Energetic 
materials are related to reacting flows in extreme 
environments such as fires and explosions. They 
typically involve high pressure, high temperature, 
strong shock waves and high strain rate deformation 
of metals. We use an Eulerian methodology to address 
these problems. Our approach is naturally free from 
large deformation of materials that make it suitable for 
high strain rate multi-material interacting problems. 
Furthermore we eliminate the possible interface 
smearing by using the level sets. We heave devised a 
new level set based tracking framework that can 
elegantly handle large gradients typically found in 
reacting gases and metals. We show several work-in-
progress application of our integrated framework. 
 

Introduction 
 

High-speed impact of materials generates strong 
shock waves, high rate of deformations and generates 
hydrodynamic pressure that are often much greater 
than the deviatoric stresses of a shocked material. 
Then, variants of the standard Euler equations for 
compressible flow can be used to model the shocked 
condensed matter with its known structural properties. 
The dominant physical mechanisms satisfy the Euler 
equations to a first approximation, and the effects 
associated with deviatoric strength are in some sense a 
small correction. 

The accurate and reliable simulation of the multi-
material shock physics poses a great challenge to the 
wide range of hydrodynamic solvers developed until 
recently. Fedkiw et al. [1] proposed the ghost fluid 
concept which consists of both the level-set function 
and natural boundary conditions to model multi-gas 
interaction. The ghost fluid method has shown 
advantage over conventional sharp interface approach 
particularly for its simplicity in defining and imposing 
conditions at the boundaries of zero-level sets. Stewart 
et al. [2] carried out a detonation simulation of the 
energetic material where they showed a robust and 
efficient way of tracking detonation front by similar 
use of the level-sets explained in [1]. The elasto-
plastic motion of metal was considered by Tran and 
Udaykumar [3]. The behavior of metal is modeled by 
the level-set function and the constitutive relations for 
ductile material. More recently, Liu et al. proposed a 
method of improving the original ghost fluid concept 

for tracking material interface [4]. They have reported 
the difficulty associated with the original method to 
when handling the strong shock impinging on a 
material’s contact surface. Both the Rankine-Hugoniot 
jump conditions and the selective solutions of the 
Riemann problem are utilized in solving the shock-
interface interaction. 

In the past, hydrodynamic codes have been actively 
developed by the US Department of Energy (DOE) 
laboratories to model multi-dimensional, multi-
material interactions with high-rates of deformations 
and high-frequency response of energetic materials in 
the presence of strong shock waves [5-7]. In particular, 
CTH developed at Sandia National Laboratories is an 
Eulerian method based hydrocode that has been 
successfully applied to a large variety of strong shock 
problems, which include hypervelocity impact and 
effects of detonating high explosives [5]. Both 
analytic and tabular equations of state (EOS) for solid, 
liquid, vapor, gas-liquid mixed phase and solid-liquid 
mixed phase have been implemented. A similar 
hydrocode, ALE3D of Lawrence Livermore National 
Laboratory is based on the Arbitrarily Lagrangian and 
Eulerian method that allows convective ‘motion’ of 
rapidly deforming Lagrangian grids [6]. PAGOSA of 
Los Alamos National Laboratory solves the 
conservation of mass, momentum, and energy 
equations across the `fixed' interface in two steps: A 
Lagrangian step where the cell distorts and follows the 
material motion, followed by a rezone step where the 
distorted cells are mapped back to the Eulerian mesh 
[7]. 

Typically these hydrocodes are first order in time 
and second order in space. Our high-resolution 
approach uses fourth-order convex ENO for the 
spatial discretization and third-order Runge-Kutta for 
time advancement. Our treatment of material 
interfaces uses level sets and is fairly simple and 
robust. Enforcement of jump conditions across the 
material interface is achieved by applying a ghost-
point-populating technique to interpolate data into 
extended regions. The time advancement is based on 
the method of lines, and it enables multi-dimensional 
calculations without time splitting and allows efficient 
implementation of Runge-Kutta schemes at orders 
higher than two. 

The physical models we use include an ideal 
equation of state (EOS) for inert compressible gas, 
ideal EOS reactive flow model for high-explosive 
(HE) that uses the reaction rate law, a Mie-Gruneisen 
EOS for inert solid, and an elasto-plastic model for 
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metal with isotropic linear hardening based on the 
Prandtl-Reuss model. In this paper, algorithmic 
discussions of Hydro-SCCM are presented. The paper 
is written with the aim that most reader would find the 
physical description of the method suitable for 
reproducing and building one’s own hydrocode. 
 

Physical description of a hyperbolic solver 
 

The general conservation laws of multi-dimensional, 
multi-material physics can be written as 

( )U F G W U
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
                                (1) 

where the variables represent a vector of conserved 
variables U, spatial fluxes in x and y-directions F and 
G, and a source, W. The discretized system of PDEs 
in (1) can be solved by independent steps of space and 
time integration. For our two-dimensional system, the 
x and y fluxes are treated with the third-order convex 
ENO scheme. Then the equation (1) is approximated 
by a system of ODEs in time that is solved by a 
fourth-order explicit and linearized implicit Runge-
Kutta scheme [8]. 
 
Discretization in time 

The third-order Runge-Kutta algorithm for time 
stepping is given by 

1

1

1

1 1
( ) ( )
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  (2) 
where the implicit RK coefficients ijc are used for 

integrating the stiff chemical source term W(U) and 
the explicit RK coefficients ijb are used for the 
convective and all other process modeling term f(U) in 
the governing equation (1).  
 
Discretization in space 

A brief discussion of the high order spatial 
descretization is given. Interested readers may find a 
full description from Ref. [9]. For a simple 
explanation, we consider a one-dimensional 
hyperbolic equation, 

( ) 0
f uu

t x
∂∂

+ =
∂ ∂

                                               (3) 

where the spatial derivative is replaced by a set of 
descretized fluxes  

( )1/ 2 1/ 2
1 ˆ ˆ 0j j

du f f
dt x + −+ − =

Δ
                           (4) 

The fluxes of a resulting ODE will determine the 
order of spatial accuracy. For a high-order ENO flux 
construction, a combination of upwind and downwind 
fluxes are suggested as  

   ( )1/ 2 1/ 2
1( ) ( )
2j jf u f u uα+

+ += + , 

( )1/ 2 1/ 2
1( ) ( )
2j jf u f u uα−

+ += −                                 (5) 

The variation in α  would control the amount of 
viscosity or diffusion of the approximation. For the 
local Lax-Friedrichs fluxes as used in this work, 

1 1
1/ 2 min( , ) max( , )

max
j j j j

j u u u u u

f
u

α
+ +

+ ≤ ≤

∂
=

∂
                             (6) 

where 1/ 2jα +  is the largest eigenvalue of the flux 
Jacobian, /df du , evaluated on the local domain 
of 1( , )j ju u + . The first-order local Lax-Friedrichs flux 
is defined as  

1/ 2 1/ 2 1/ 2 1
ˆ ( ) ( )j j j j jf f u f u+ −
+ + + += +                       (7) 

Then, the high order ENO flux is obtained as  

   ( )( )1/ 2 1/ 2
1( ) [ ] [ ]
2j j j jf u f u x u xα+

+ += + , 

( )( )1/ 2 1/ 2
1( ) [ ] [ ]
2j j j jf u f u x xα−

+ += −             (8) 

It is straight forward to obtain a polynomial 
reconstruction to a order of accuracy greater than two. 
The formulation based on the Convex ENO scheme 
[10] uses the divided difference values closest to the 
previous order of fluxes chosen. The scheme reduces 
to a low-order automatically at discontinuities, while it 
maintains a higher-order in the smooth region.  
 
Physical description of interface tracking 

A level-set method [1,11] provides a simple way to 
track a multi-material interface that may separate a gas 
from a solid, for example. We consider the material 
interface of 1) gas-gas, 2) gas-liquid, 3) solid-solid, 
and 4) solid-void (vacuum). The sharp discontinuity of 
state variables across the interface is handled using the 
level sets. The level-set equation in two dimension 
below tracks the location of the material interface 
represented by the zero-level contour ( , ) 0,x yφ =  

1 2 0v v
t x y
φ φ φ∂ ∂ ∂
+ + =

∂ ∂ ∂
                                   (9) 

Initially, φ is taken as the signed normal distance 
function to the interface. The material interface 
evolves with local material velocity, 1 2( , )v v v= . The 
material velocity on either side of the interface 
provides the velocity extension that is used for 
advection of φ  in the level-set domain. The level-set 
function, φ , is taken positive outside of material and 
negative inside, and φ  is initialized to be a signed 
normal distance from the material interface.  

The re-initialization of level-set contours is a 
necessary procedure for making sure that no steep 
gradient enters into the smooth level-set field of a 
distance function, φ . This requires solving the 
following equations until a steady state is reached:  
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( )( ) 1 0Sτφ φ φ+ ∇ − =                                  (10) 

where the smeared sign function, 

( )22 21 x
S φ

φ φ+ −∇ Δ
=  is used from [11]. Then equation 

(10) is solved by the Godunov’s scheme as: 

    ( )
( )

1

2 2 2 2

2 2 2 2

max[( ) , ( ) ] min[( ) , ( ) ] 1

max[( ) , ( ) ] min[( ) , ( ) ] 1

n n
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Δ

=

− + −
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(11) 
where , , ,a b c d± ± ± ± are the Gudunov fluxes from 

[11]. The monotonicity of equation (11) is enforced by 
restricting the time step as follows 

1
2

S
x
τΔ

≤
Δ

                                                      (12) 

 

 
Fig.  1 Original 1-D ghost fluid conditions for contact 

of two materials with no strength (e.g. two gases) 
 
Gas-gas interface tracking 

In many of the gas dynamics simulations, a single 
phase gas is assumed for simulating the phenomena of 
interest. In a physical system simulation, it is natural 
to include the multi-gas effects. At the gas-gas 
interface, the entropy and density jump while velocity 
and pressure are continuous. This jump in entropy and 
density provides an extra strain on the calculation of 
interface evolution. The ghost fluid concept is used to 
remedy the inherent oscillatory behavior of the 
interface. We let two gases evolve independent of 
each other so as to solve a set of two Riemannn 
problems (see figure 1). A band of ghost points on the 
other side of real gas defines a natural boundary 
condition for the real gas. The equation of state is then 
used to calculate the internal energy of the ghost point.  

Using the physical condition that pressure and 
velocity are continuous across the material interface, 
we set the velocity and pressure of the ghost band of 
the real gas equal to the velocity and pressure of the 
ghost gas. Once the pressure and velocity have been 
defined in the ghost band, we need to specify one 
more quantity to define a material. We use one sided 
extrapolation of entropy which would minimize the 

dissipative error associated with the sharp density 
gradient. To further suppress any spurious oscillation 
from the well-known over-heating effect [12], the 
isobaric fix is applied in a way that defines velocity, 
pressure and entropy (or density) of the ghost band in 
one-dimension as  

ghost real
1 1mat1 mat2i iv v+ += , 

ghost real
1 1mat1 mat2i ip p+ +=       (13) 

( )1/ghost real ghost real
1 1mat1 mat1 mat1 mat1

/
real

i i i ip p
γ

ρ ρ+ +=      (14) 

where we have used the definition of entropy 
/p γη ρ= for ideal gas. The two-dimensional 

extension of the ghost node procedure for smooth 
variables ( ,nv p ), discontinuous variable ( tv ), and 
extrapolated variables ( ρ or e ) will be discussed in 
the general solid-solid case. 
 
Gas-water interface tracking 

The interaction of gas-water interface can be found 
in a whole class of problems that include the 
underwater explosion with cavitations. In this case, 
the velocity and pressure are obtained using (13) as in 
the gas-gas case while the density is not the 
extrapolation variable in this case. Since the equation 
of state for water has pressure as a function only of 

density (
0

p B B A
γ

ρ
ρ

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
, 7.15γ = , 

510 PaA = , 83.31 10 PaB = × , and 
3

0 1,000kg/mρ = ), one needs to be careful when 
choosing the isobaric fix variable. A natural choice for 
water is the internal energy whereas the entropy was 
used for gas previously. In the ghost band region, the 
ghost variables are then defined as follows: 

ghost real
1 1mat1 mat2i iv v+ += , 

ghost real
1 1mat1 mat2i ip p+ +=         (15) 

ghost real
1 1mat1 mat2i ie e+ +=                                              (16) 

The two-dimensional extension of the smooth 
variables, discontinuous variables, and extrapolated 
variables are discussed in the following solid-solid 
section. 
 
Solid-solid interface tracking 

In [3], authors proposed a simple algorithm to 
calculate the interaction between two metals. They 
pointed out that the original ghost fluid concept of [1] 
cannot be applied to describe the motion of strong 
impacts of metals because the deviatoric stresses 
introduced in the elasto-plastic material affect the 
effective pressure and the density. Since the original 
ghost fluid concept would work properly in the low 
strain-rate deformation, the original concept is 
extended to incorporate the physical restrictions such 
as the Rankine-Hugoniot relations and the 
approximate Riemann solver. In this work, we 
introduce an extended ghost fluid concept for 
describing the elasto-plastic behavior of metals in 
contact. 
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Fig.  2 Two-dimensional contact of materials with 

strength (e.g. two metal) 
 

Along the metal-metal interface shown in figure 2, 
we impose continuous local velocity normal to the 
interface and the continuous normal traction. However, 
the shear and tangential components of traction 
remain discontinuous. Thus the variables of ghost 
band are obtained via the combination of the ghost 
fluid concept and the physical restrictions. First, the 
ghost point (G) at ( , )i j  of metal-metal interface in 
figure 3 is found, and the normal unit vector of the 
level-set function is computed. Then, the reflected 
point (R) adjacent to the ghost point from the 
combination of the ghost and unit normal vector is 
obtained. Then one determines whether the fixed 
nodes around the reflected point (R) is real or ghost. 
From this procedure, one can identify the reflected 
point and evaluate its value by the bilinear 
interpolation. The interpolation is performed using the 
following simple relation for three fixed nodes,  

1, 1, 1 , 1(1 ) ( 1) (1 )R i j i j i jU U Y U X Y U X+ + + += − + + − + −   
(17) 

where ( ) /iX x x x= − Δ  and ( ) /jY y y y= − Δ . 
We apply the physical restriction to the obtained 

ghost point values. The normal and tangential 
velocities are defined as 

( ) realghost

mat1 mat2n x x y yv v n v n= +                            (18) 

( ) realghost

mat1 mat1t x y y xv v n v n= −                             (19) 

Because the velocity normal to the interface is 
continuous and the tangential velocity is discontinuous, 
the components of the normal and the tangential 
velocities are directly related to the real and the ghost 
velocity components, respectively (see equations 
(18,19)). The obtained velocity components are 
converted to the Cartesian components via the 
following relations 

( ) ghostghost

mat1 mat1x n x t yv v n v n= +                           (20) 

( ) ghostghost

mat1 mat1y n y t xv v n v n= −                           (21) 

Density and internal energy of the ghost point are 
extrapolated from the reflected point. Finally the  

Metal 2
(ghost material)

Metal 1
(real material)

n̂
R

G

(i, j) (i+1, j)

(i, j+1) (i+1, j+1)

(x, y)

 
Fig.  3 Schematic of 2-D ghost fluid conditions for 

solid-solid case 
 

pressure is obtained by the equation of the state 
which relates density and internal energy.   

Additional variables of deviatoric stress and 
effective plastic strain at the ghost point are also 
obtained from the physical restrictions of the ghost 
fluid concept. To find the deviatoric stress 
components, the Cauchy stress components at the 
ghost point are first determined: 

( ) realghost 2 2
mat1 mat2

2nn x xx y yy x y xyn s n s n n s pσ = + + −      (22) 

( ) realghost 2 2
mat1 mat1

2tt x yy y xx x y xyn s n s n n s pσ = + − −      (23) 

( ) realghost 2 2
mat1 mat2

( ) ( )nt x y yy xx x y xyn n s s n n sσ = − + −     (24) 

The continuity of the normal traction is enforced 
while the shear and tangential tractions are left 
discontinuous. The components of deviatoric stresses 
are found as 

( ) ghostghost 2 2
mat1 mat1

2xx x nn y tt x y nts n n n n pσ σ σ= + − −    (25) 

( ) ghostghost 2 2

mat1 mat1
2yy x nn y tt x y nts n n n n pσ σ σ= + + −    (26) 

( ) ghostghost 2 2

mat1 mat1
( ) ( )xy x y nn tt x y nts n n n nσ σ σ= − + −   (27) 

We extrapolate the effective plastic strain from the 
reflected point such that 

ghost real

mat1 mat1

p pε ε=                                          (28) 

implying that the ghost point at ( , )i j is defined by 
its reflected twin (R) in figure 3.  
 
Solid-void interface tracking 

For the metal-void interface shown in figure 4, we 
apply the zero traction normal and shear to the 
interface, but allow the tangential traction to slip. As 
in the case of metal-metal, the metal-void procedure 
for obtaining the ghost variables is identical. We first 
compute the unit normal vector from the level-set 
function and find the reflected point using the unit  
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Void
(ghost material)

Metal 1
(real material)

n̂
R

G

(i, j) (i+1, j)

(i, j+1) (i+1, j+1)

 
Fig.  4 Schematic of 2-D ghost fluid conditions for 

solid-Void case 
 

normal vector and the ghost point as discussed in 
the previous section. The Cartesian components of 
ghost velocities are given in equations (20, 21). 

Next, we require that the normal and shear 
components of the traction are zero and the tangential 
traction is discontinuous such that 

ghost

mat1
0nnσ = , 

ghost

mat1
0ntσ =                                 (29) 

( ) realghost 2 2
mat1 mat1

2tt x yy y xx x y xyn s n s n n s pσ = + − − (30) 

The resulting deviatoric stress terms at the ghost 
point in the Cartesian coordinate are 

( ) ghostghost 2
mat1 mat1xx y tts n pσ= −                             (31) 

( ) ghostghost 2

mat1 mat1yy x tts n pσ= −                             (32) 

( ) ghostghost

mat1 mat1xy x y tts n n σ= −                             (33) 

As before, the effective plastic strain at the ghost 
point ( , )i j  is given by equation (28).  
 
 

Equations 
 
Multi-step chemical reaction 

For illustration of the numerical implementation of 
multi-step chemistry, we consider the following two 
first order reactions and one second-order reaction: 

DC

CB
BA

r

r

r

⎯→⎯

⎯→⎯

⎯→⎯

3

2

1

                                                  (34) 

where the three reaction rates are for each steps of 
reaction,   

1 1 1exp( / ) Ar Z E RT ρ= −  

2 2 2exp( / ) Br Z E RT ρ= −  
2

3 3 3exp( / ) Cr Z E RT ρ= −                       (35) 
Here A is the unreacted solid energetic material, B 

is a solid-state intermediate, C and D are intermediate 

and final product gases, respectively. Each i -th 
chemical reaction follows the Arrhenius form with the 
reaction rate- ir , the frequency factor- iZ , the 

activation energy- iE , and the j -th species density, 

jρ . The mass conservation requires that 

.A B C Dρ ρ ρ ρ ρ= + + +  The species equations 
then become 

1 1 2 2 3 3, , ,CA B DDD D D
r r r r r r

Dt Dt Dt Dt
ρρ ρ ρ

= − = − = − =    (36) 

with DtD / , the total derivative.  
The solutions to the four-species reaction equations 

in (36) is obtained by the linearized implicit ODE 
integrator that does not require matrix inversion of the 
source Jacobian matrix associated with the standard 
iterative procedure. The incremental change in the 
species production per time step is calculated by the 
linearized implicit Runge-Kutta scheme [8]  

1

1

1 1

1 1

[ ( )] ( )

( 1, ,3)

r
n n

j j
j

i i
n n

i ij j i ij j
j j

U U W k

WI td U c k k tW U c k
U

i

+

=

− −

= =

= +

∂
− Δ + = Δ +

∂

=

∑

∑ ∑
K

 

(37) 
where the species vector is 

( , , , )A B C DU ρ ρ ρ ρ=  and the species source 

vector is 1 1 2 2 3 3( , , , )W r r r r r r= − − − . The source 
Jacobian needed in the integration of the species 
reaction process is evaluated for the three-step 
reactions: 

1

1 2

32

3

0 0 0

0 0

20 0

20 0 0

A A A A

A A B C D

B B B B

A A B B C D

C C C C

A B B C C D

D D D D

A B C C D

W r W W W
U U U U
W r W r W W
U U U UW
W W W r WrU
U U U U

rW W W W
U U U U

ρ

ρ ρ

ρ ρ

ρ

∂ − ∂ ∂ ∂⎡ ⎤= = = =⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥
∂ ∂ − ∂ ∂⎢ ⎥

= = = =⎢ ⎥∂ ∂ ∂ ∂∂ ⎢ ⎥=
⎢ ⎥∂ ∂ ∂ − ∂∂

= = = =⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂

= = = =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

  

(38) 
 
Burn(deflagration) propagation 

During the burning of condensed phase energetic 
material, the surface regression is assumed to vary 
with respect to pressure such that 

n
nv ap=                                                       (39) 

where the surface normal velocity nv  propagates 
the burning surface into the unreacted solid explosive 
as the n-th power of pressure. The regression 
coefficient-a, power coefficient-n are summarized for 
HMX and RDX [13,14]. When 20% of final product 
gas is produced, the finite chemical kinetics is no 
longer solved; instead a switch in chemical step is 
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made to simply propagate the burning front via 
Jacobi-Hamilton equation of the form 

0t n nvφ φ+ =                                              (40) 

where φ is a passive scalar called the level sets that 
defines and propagates the burning boundary between 
the reacted and unreacted condensed energetics. 
2. JWL++ model for detonation 

High explosives generate a high pressure (~10 GPa) 
shock wave (~5 km/s) with a typical detonation time 
scale ranging in several micro-seconds. Improved 
from the classical fast detonative kinetic model of 
Ignition and Growth [15], a simpler JWL++ model 
[16] consists of four parts: unreacted HE pressure, 
reacted HE pressure, a mixer of two pressures, and 
simple reaction rate equation. Pressure of the 
unreacted HE is expressed by the Murnaghan equation 
as: 

1 1 1unreacted np
nκ ν

⎛ ⎞= −⎜ ⎟
⎝ ⎠

                           (41) 

where 0/ν ρ ρ=  and n, κ are material dependent 
parameters. For example, n = 7.4, 

11 139 10 Paκ − −= × , and 3
0 1160 /kg mρ =  are 

used for ANFO-K1. 
The pressure of reacted HE is given by: 

( ) ( )1 2 1
0

exp expreacted n

Cp A R B Rν ν
ρ κν −= − + − +   

(42) 
where A, B, C, 1R , 2R , 0ρ  and κ  are material 

dependent parameters given in Table 1 of Ref. [17]. 
For the mixer of two equations of state, a simpler 
algorithm based on the mixture theory is used. It is 
known that the mixer is not the critical factor to a 
detonation initiation. The pressure is obtained by: 

(1 )mix unreacted reactedp p pλ λ= − +            (43) 

where the mass fraction of product, λ , is a reaction 
progress variable that is governed by the global rate 
equation of the form 

( ) (1 )bd G p q
dt
λ λ= + −                            (44) 

with the reaction rate constant 7 13.5083 10 bG s Pa− − −= ×  , 
pressure power constant 1.3b =  and artificial 
viscous constant 0q = for ANFO-K1, for example. 
 
Model equations for gaseous phase energetic 
simulation 

The two-dimensional, conservative hyperbolic 
equation for reactive compressible flow in equation 
(1) consists of the conservative vectors given by  

1

2

i

v
U v

E

ρ
ρ
ρ
ρ
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

1
2
1

1 2

1

1

( )

i

v
v p

F v v
v E p

v

ρ
ρ
ρ
ρ
ρ

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥=
⎢ ⎥

+⎢ ⎥
⎢ ⎥⎣ ⎦

, 

2

1 2
2
2

2

2

( )

i

v
v v

G v p
v E p

v

ρ
ρ
ρ
ρ
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= +
⎢ ⎥

+⎢ ⎥
⎢ ⎥⎣ ⎦

 

 (45) 
with a source term vector 

1

0
0
0

N

i i
i

i

W
q rq

w
=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−∇ −
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑r
                                    (46) 

where iρ  is the partial density of each i -th HE 

compositions (summing up to a total density, ρ ), qr  

is the heat flux, and iq  is the heat of reaction.  
 
Model equations for condensed phase energetics 
and metallic (inert) confinements 

The inclusion of deviatoric stresses and effective 
plastic strain to the above formulation is considered. 
The governing variables are given by 
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                                        (47) 

where i = 1, …, 4, and iφ  represents the three 

deviatoric stress components ijs and the effective 

plastic strain pε . As before, λ is a single product 
mass fraction that monitors the extent of reaction. The 
conservative fluxes in ,x y  directions then become 
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  (48) 

In the dynamic response of metals without chemical 
reaction, α would remain zero. The equation of state 
for obtaining the pressure or the traceless component 
of stress tensor is obtained via a choice of model 
equations for both energetic and inert materials. The 
source that models the elasto-plastic behavior of a 
typical metal is  
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(49) 
where the last four terms of source vector W 

corresponds to the three components of deviatoric 
stress , ,xx xy yys s s  and the effective plastic strain pε . 
The detailed derivation of these equations is given in 
[17]. 
 
Time step control 

The control of the time step increment during the 
multi-material reactive simulation follows two basic 
modes of operation: 1) fixed time step that uses the 
specified time increment for each cycle, and 2) time 
constraints that the code automatically chooses as 
appropriate time step based on numerical properties of 
the dynamic simulation. 

In the fixed time step control mode, the user defined 
time increment represents a physically allowable 
minimum value that would reasonably resolve 
dynamic events taking place during the reactive multi-
material flow. This would require experience and a 
good sense of problem intuition toward the expected 
solution behavior. Oftentimes, smallest allowable time 
step increment is used to avoid noises present in the 
flow field of multi-scale (time and space) simulation.  

In the constraint approach that is discussed in detail 
below, the step size control decision is based on the 
constraints of hydrodynamics, thermal transport, and 
chemistry. For explicit time marching, a stability 
condition for thermal diffusion is given by 

k
xc

t v
therm

2)(
2
1 Δ

=Δ
ρ

                              (50) 

with kcv , being heat capacity and thermal 
conductivity, respectively.  

Two controls are used to define the amount of 
reaction that is allowed during a time step. During the 
part of a chemical reaction run where reactions are 
occurring slowly, high fidelity on the chemical 

composition is desired. A small change in the 
composition can have significant noise on the final 
results. When the reactions are occurring rapidly, all 
that is modeled is a rapid transformation from reactant 
to product. The non-linear aspect of chemical 
reactions is their temperature dependence. 

During the species reaction process, numerical 
difficulties arise when the chemical reaction timescale 
to other phenomena occurring in a system is much 
smaller than 1. In other words, the large cell 
Damkohler number ( chemCFL ttDa ΔΔ= / ) of 
chemical reaction processes is associated with the 
sufficiently small chemical relaxation time scale τ  
that is inversely proportional to the large pre-
exponential factor iZ . The sub-cycle time step chemtΔ  
required to accurately resolve chemical relaxation 
within a single cycle of CFLtΔ step is chosen in the 

range of )(~)( xOO Δτ for numerically efficient 
and stable calculation for either explicit or implicit 
time integration.   

Advection puts limit on amount of material that can 
flow through a grid in one time step. This is the case 
where the appropriate time scale for advection tΔ  
scales as ~ )( xO Δ , the grid size. The CFL condition 
monitors the domain of influence of the characteristic 
wave speeds based on the convective Jacobian 
matrices of the hyperbolic system in (1). In two 
dimensions, the CFL time step is calculated from  

min ,
max / max /CFL
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df du dg du

⎧ ⎫Δ Δ⎪ ⎪Δ = × ⎨ ⎬
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  (51) 

where CFL is the Courant number, max /df du and 

max /dg du  are the largest eigenvalues (in absolute 

sense) of the Jacobians of f  and g . Evaluation of the 
derivatives of f  and g  with respect to u  give 
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and  
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(53) 
The eigenvalues of the Jacobians (40) and (41) are 
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1 1 1 1 1 1, , , , ,f v c v v v v v cλ = − + , 

2 2 2 2 2 2, , , , ,g v c v v v v v cλ = − +                  (54) 

where the sound speed c  is defined by 
2

2

p p pc
eρ ρ

∂ ∂
= +
∂ ∂

                                   (55) 

The partial derivatives of pressure in the case of an 
ideal EOS given as 2 2( 1){ ( ) /(2 )}p r m nγ ρ= − − +  
are determined:  
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For an ideal EOS for HE, 

2 2( 1){ ( ) /(2 )}cp r Q m nγ α ρ= − + − + with a heat of 

combustion cQ , the partial derivatives are found as 
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In the case of Mie-Gruneisen EOS for metal, the 
pressure is given by 
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with 01 /ϕ ν ν= −  where ν  is the specific 

volume. The partial derivatives of pressure become 
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With 1 1C sϕ= − , ( )2 01
2

C ν ν
ν
Γ

= − − . Thus the 

optimal time step CFLtΔ is obtained by picking the 

larger of the eigenvalues in fλ  and gλ . This procedure 
will assure that the domain of influence is properly 
covered by the computational mesh in space-time. 
 
Verification of convergence 

We consider two different gases initially brought to 
a contact. Upon removal of the diaphragm between 
the gases with differentγ ’s, an expansion wave and a 
shock propagate in the opposite direction, and a 
material interface follows the right-running shock. 

Listed in Table 1 are the initial conditions of this 
exercise. 100 points spanning 1 meter in x-direction is 
used in this shock tube calculation. The spatial 
accuracy of a fourth-order convex ENO scheme with a 
third-order Runge-Kutta scheme is tested for its rate of 
convergence. The material interface between the gases 
is tracked via the ghost fluid approach adapted in the 
Hydro-SCCM.  

The spatial accuracy is analyzed by measuring the 
relative error 1E  in the 1L  norm during the time 
integration for estimating the rate of convergence. The 
eight data points between x =0.52 to x =0.59 in 
increments of xΔ =0.01 are compared with the double 
grid data points at the same locations at time t=0.0007. 
The discrete 1L  norm is defined as: 

1
exact

i
i

E xρ ρ= − Δ∑                                 (60) 

If a method is of r-th order, then for a uniform mesh 
with N grid points, the error satisfies 

( )1
crNE x= Ο Δ                                              (61) 

When the uniform mesh is refined by doubling the 
grid points, we should have 
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Then, one can solve for the rate of convergence, 

cr and finds 
2

1 1ln ln
ln 2

N N

c
E Er −

=                                    (63) 

The 1L  error and the rate of convergence based on 
density are displayed in Table 2 with the rate of 
convergence calculated.  

In this convergence test using the fourth-order 
convex ENO scheme with the material interface 
tracking algorithm used in the Hydro-SCCM, we have 
shown that the rate of convergence approaches the 
theoretical value of 4, each time grids are refined. In 
order to minimize the possible error due to the use of a 
third-order temporal algorithm, tΔ is kept small 
compared to xΔ .  

Table.  1 Initial conditions for convergence test 
 Gas1 (50 cm) Gas2 (50 cm) 
γ 1.4 1.2 

3(kg / m )ρ 1 0.125 
(Pa)p  1.5 x 105 1.0 x 104 

(m/s)v  0 0 
 

Table.  2 Initial conditions for convergence test 
N 1E  cr  

100 59.0 10−×  - 
200 51.68 10−×  2.4 
400 62.7 10−×  2.8 
800 71.8 10−×  3.9 
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Conclusion 
 

We have presented a numerical methodology 
utilized in the development of the Hydro-SCCM tool 
for computing multi-material shock physics at slow to 
high speed dynamics involving high explosives and 
inert confinements. Chemical reaction models include 
both deflagration and detonation of condensed phase 
energetic materials. The developed tool is useful for 
analysis of an energetic system interacting with 
chemico-mechanical shock loadings in both gaseous 
and condensed phase media that is confined by the 
elasto-plastically deforming boundaries. The extended 
and applied utilization of the tool is the subject of the 
companion paper.  
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