• Title/Summary/Keyword: Multi-learning System

Search Result 631, Processing Time 0.031 seconds

하이브리드 통계적 특징 모델과 신경망을 이용한 자동차 번호판 인식 (Recognition of License Plates Using a Hybrid Statistical Feature Model and Neural Networks)

  • 유신;정병준;강현철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권12호
    • /
    • pp.1016-1023
    • /
    • 2009
  • 자동차 번호판 인식 시스템은 문자 추출, 특징 추출 등의 영상처리와 추출된 문자를 인식하는 인식기로 구성된다. 특징 추출은 문자 영역의 데이터 감소뿐만 아니라 인식 성능을 결정한다. 따라서 본 논문에서는 번호판 인식의 결과에 영향이 큰 숫자 인식, 특히 숫자의 특징 추출에 초점을 두었으며, 데이터의 군집성을 재배치하여 데이터 간의 최적의 산란도를 확보할 수 있는 통계적 특징의 혼합 모델을 제안하고, 이를 다층 퍼셉트론과 LVQ 신경망을 이용하여 유효성을 검증하였다. 제안된 통계적 특징 추출 방법은 번호판 영상이 갖는 정보를 가장 잘 유지하고, 잡음과 외부 환경에 강건하며 효과적인 방법임을 보여준다.

퍼지 및 신경망 이론을 이용한 교통사고예측모형 개발에 관한 연구 (Development of Traffic Accidents Prediction Model With Fuzzy and Neural Network Theory)

  • 김장욱;남궁문;김정현;이수범
    • 대한교통학회지
    • /
    • 제24권7호
    • /
    • pp.81-90
    • /
    • 2006
  • 교통사고를 줄이기 위한 방안으로써 교통사고와 다양한 요인과의 관계를 규명하는 것이 시급한 현실의 과제일 것이다. 본 연구에서는 전북권의 교통사고가 가장 많고, 치사율이 가장 높은 국도 17호선(전주-남원)를 대상으로 교통사고의 원인이 되는 다양한 요인들이 교통사고에 어느 정도 영향을 미치고 있는지에 대하여 교통안전분야에서 자주 사용되어오던 다중회귀이론, 수량화이론을 적용하여 교통사고예측모델을 구축하였다. 또한 데이터의 불확실성 상태를 합리적으로 처리할 수 있는 퍼지 추론이론 및 인간의 신경계를 수학적으로 모형화하여 학습에 의한 예측에 있어 뛰어난 것으로 알려져 있는 신경망이론을 적용한 교통사고예측모델을 구축하였다 이를 통해, 퍼지추론이론 및 신경망 이론의 유효성을 입증하고 교통사고분석 분야의 적용 타당성을 확인하는데 초점을 맞추고 있다.

스마트 디바이스 기반 수업분석 프로그램 설계 및 구현 -한국어 특성 반영과 교사활용도 증진을 위한 UI설계를 적용하여- (Design and Implementation of Smart Device Application for Instructional Analysis)

  • 강두봉;정주훈;김영환
    • 컴퓨터교육학회논문지
    • /
    • 제18권4호
    • /
    • pp.31-40
    • /
    • 2015
  • 본 연구의 목적은 수업 개선을 위한 수업분석 프로그램을 스마트 디바이스 기반의 어플리케이션으로 설계 및 구현한 데 있다. 이를 위해 사용자 인터페이스(UI)를 간소화하고, 서술어가 뒤에 나오는 한국어 특성을 감안하였으며, 입체적 분석을 위해 Flanders의 '언어상호작용 분석법', Tuckman의 '수업분위기 분석법', Mcgraw의 '과업집중 분석법'의 3가지 방법을 통한 분석이 가능하게 설계하였다. 본 연구는 선행 연구들과 달리 위 3가지 특징을 적용하여 교사들이 손쉽게 스스로 자신의 수업을 분석할 수 있는 앱을 개발했다는데 의의가 있으며, 일선 교사들은 다른 교사의 도움이나 전문적 지식 없이도 수업을 분석하고 피드백 할 수 있어 자발적 수업개선에 도움이 될 수 있을 것이다. 향후, 최근의 수업 환경에 맞는 수업분석 기법 및 음성인식 시스템 등의 연구와 연계하여 수업분석 원리의 정립과 관련 어플리케이션의 개발에 기초가 될 수 있을 것이다.

가우시안 기반 Hyper-Rectangle 생성을 이용한 효율적 단일 분류기 (An Efficient One Class Classifier Using Gaussian-based Hyper-Rectangle Generation)

  • 김도균;최진영;고정한
    • 산업경영시스템학회지
    • /
    • 제41권2호
    • /
    • pp.56-64
    • /
    • 2018
  • In recent years, imbalanced data is one of the most important and frequent issue for quality control in industrial field. As an example, defect rate has been drastically reduced thanks to highly developed technology and quality management, so that only few defective data can be obtained from production process. Therefore, quality classification should be performed under the condition that one class (defective dataset) is even smaller than the other class (good dataset). However, traditional multi-class classification methods are not appropriate to deal with such an imbalanced dataset, since they classify data from the difference between one class and the others that can hardly be found in imbalanced datasets. Thus, one-class classification that thoroughly learns patterns of target class is more suitable for imbalanced dataset since it only focuses on data in a target class. So far, several one-class classification methods such as one-class support vector machine, neural network and decision tree there have been suggested. One-class support vector machine and neural network can guarantee good classification rate, and decision tree can provide a set of rules that can be clearly interpreted. However, the classifiers obtained from the former two methods consist of complex mathematical functions and cannot be easily understood by users. In case of decision tree, the criterion for rule generation is ambiguous. Therefore, as an alternative, a new one-class classifier using hyper-rectangles was proposed, which performs precise classification compared to other methods and generates rules clearly understood by users as well. In this paper, we suggest an approach for improving the limitations of those previous one-class classification algorithms. Specifically, the suggested approach produces more improved one-class classifier using hyper-rectangles generated by using Gaussian function. The performance of the suggested algorithm is verified by a numerical experiment, which uses several datasets in UCI machine learning repository.

다중 AFLC를 이용한 IPMSM 드라이브의 효율 최적화 제어 (Efficiency Optimization Control of IPMSM Drive using Multi AFLC)

  • 최정식;고재섭;정동화
    • 전기학회논문지P
    • /
    • 제59권3호
    • /
    • pp.279-287
    • /
    • 2010
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning controller(AFLC). In order to optimize the efficiency the loss minimization algorithm is developed based on motor model and operating condition. The d-axis armature current is utilized to minimize the losses of the IPMSM in a closed loop vector control environment. The design of the current based on adaptive fuzzy control using model reference and the estimation of the speed based on neural network using ANN controller. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC. Also, this paper proposes speed control of IPMSM using AFLC1, current control of AFLC2 and AFLC3, and estimation of speed using ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled AFLC, the operating characteristics controlled by efficiency optimization control are examined in detail.

비대면 환경에서의 비판적 사고와 토론교육 - 공대 신입생 대상 온라인 수업 사례를 중심으로 (Critical Thinking and Debate Education under Non-Face-to-Face Situation - Through Online classes for Freshmen at the Engineering College)

  • 신희선
    • 공학교육연구
    • /
    • 제24권1호
    • /
    • pp.34-45
    • /
    • 2021
  • This research is a case study about "Critical Thinking and Debate Education" class which was done for freshmen at the engineering college of "S" Women's University. Real time remote classes through LMS and ZOOM were the most effective tools under on-line circumstances, considering the fact that video lectures only cannot cultivate students' capabilities of critical thinking and communication. Throughout the analysis on students' self-reflection journals and lecture evaluations, this paper examined considerable future points and the pros and cons of "Critical Thinking and Debate Education" under online presentation and discussion situation. As research outputs, students told they could feel less nervousness and anxiety when they exercise and have a presentation because they could choose familiar space for them. In addition, students also told that they feel comfortable about both self-feedback and peer evaluation, repeatedly seeing the recorded video clip. However, on the contrary, sometimes students felt uncomfortable due to unstable internet connection through the online classes, and they also were regretful about the missing chances of interaction between a teacher and students and of intimate exchanges among students. They also told they had felt a kind of limit of enhancing their presentation skills just in front of the monitor. Considering these outcomes, this research paper points out that online education needs to be proceeded by strengthening multi layered feedback to students with the build-up of a non-face-to-face stable educational infrastructure, application of online instructional strategy, and utilization of YouTube platform and video contents. Through this research paper, I hope the new system of encompassing on/off line "Critical Thinking and Debate Education" and effective teaching and learning method can be developed soon by strengthening the strength of online education.

자율주행차용 우선순위 기반 다중 DNN 모델 스케줄링 프레임워크 (Priority-based Multi-DNN scheduling framework for autonomous vehicles)

  • 조호진;홍선표;김명선
    • 한국정보통신학회논문지
    • /
    • 제25권3호
    • /
    • pp.368-376
    • /
    • 2021
  • 최근 딥러닝 기술이 발전함에 따라 자율 사물 기술이 주목받으면서 드론이나 자율주행차 같은 임베디드 시스템에서 DNN을 많이 활용하고 있다. 클라우드에 의지하지 않고 높은 인식 정확도를 위해서 큰 규모의 연산이 가능하고 다수의 DNN을 처리할 수 있는 임베디드 시스템들이 출시되고 있다. 이러한 시스템 내부에는 다양한 수준의 우선순위를 갖는 DNN들이 존재한다. 자율주행차의 안전 필수에 관련된 DNN들은 가장 높은 우선순위를 갖고 이들은 반드시 최우선적으로 처리되어야 한다. 본 논문에서는 다수의 DNN이 동시에 실행될 때 우선순위를 고려해서 DNN을 스케줄링하는 프레임워크를 제안한다. 낮은 우선순위의 DNN이 먼저 실행되고 있어도 높은 우선순위의 DNN이 이를 선점할 수 있어 자율주행차의 안전 필수 응용의 빠른 응답 특성을 보장한다. 실험을 통하여 확인한 결과 실제 상용보드에서 최대 76.6% 성능이 향상되었다.

딥러닝 기반 객체 인식과 최적 경로 탐색을 통한 멀티 재난 드론 시스템 설계 및 구현에 대한 연구 (A Study on the Design and Implementation of Multi-Disaster Drone System using Deep Learning-based Object Recognition and Optimal Path Planning)

  • 김진혁;이태희;박종현;정예림;장서현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.556-559
    • /
    • 2020
  • 최근 태풍, 지진, 산불, 산사태, 전쟁 등 다양한 재난 상황으로 인한 인명피해와 자금 손실이 꾸준히 발생하고 있고 현재 이를 예방하고 복구하기 위해 많은 인력과 자금이 소요되고 있는 실정이다. 이러한 여러 재난 상황을 미리 감시하고 재난 발생의 빠른 인지 및 대처를 위해 본 논문에서는 인공지능 기반의 재난 드론 시스템을 설계 및 개발하였다. 본 연구에서는 사람이 감시하기 힘든 지역에 여러 대의 재난 드론을 이용하며 딥러닝 기반의 최단 경로 알고리즘을 적용해 각각의 드론이 최적의 경로로 효율적 탐색을 실시한다. 또한 드론의 근본적 문제인 배터리 용량 부족에 대한 문제점을 해결하기 위해 Ant Colony Optimization (ACO) 기술을 이용하여 각 드론의 최적 경로를 결정하게 된다. 제안한 시스템 구현을 위해 여러 재난 상황 중 산불 상황에 적용하였으며 전송된 데이터를 기반으로 산불지도를 만들고, 빔프로젝터를 탑재한 드론이 출동한 소방관에게 산불지도를 시각적으로 보여주었다. 제안한 시스템에서는 여러 대의 드론이 최적 경로 탐색 및 객체인식을 동시에 수행함으로써 빠른 시간 내에 재난 상황을 인지할 수 있다. 본 연구를 바탕으로 재난 드론 인프라를 구축하고 조난자 탐색(바다, 산, 밀림), 드론을 이용한 자체적인 화재진압, 방범 드론 등에 활용할 수 있다.

BLE 신호 기반 기계학습을 이용한 재실 여부 결정 방법 (BLE Signals-based Machine Learning for Determining Indoor Presence)

  • 김성창;김진호
    • 한국정보통신학회논문지
    • /
    • 제26권12호
    • /
    • pp.1855-1862
    • /
    • 2022
  • Beacon을 이용한 실내 재실 여부 결정 및 실내 측위 기술을 통해 다양한 실내 위치기반 서비스를 제공할 수 있다. 하지만, Beacon이 송출하는 BLE 신호는 다중 경로 페이딩 등의 문제로 인해 RSSI 값이 불안정하기 때문에 재실 여부 결정의 정확도를 보장하기 어렵다. 본 논문에서는 다양한 상황에서도 정확성을 보장하기 위해 강의실의 문이 열린 상태에서 데이터를 수집하였다. 수집된 데이터를 기반으로 신호의 특성을 고려한 재실 여부 결정 방법을 제안한다. 제안된 방법은 SVM 모델을 사용하며, 수신 신호 강도만을 사용한 결과에 비해 약 10% 정확도 향상을 보였다. 이 방법은 수신기 하나만으로도 재실 여부를 정확하게 판단할 수 있다는 장점이 있다. 제안된 방법을 통해 정확도 높은 염가형 재실 여부 결정 시스템을 구현할 수 있을 것으로 기대된다.

Visual Model of Pattern Design Based on Deep Convolutional Neural Network

  • Jingjing Ye;Jun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.311-326
    • /
    • 2024
  • The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.