• Title/Summary/Keyword: Multi-layers

Search Result 997, Processing Time 0.022 seconds

Liquid Crystal Alignment on Multi-stacked Layer HfO2 Thin Films Using a Solution-process (용액 공정 기반의 다중 적층된 HfO2 박막 상에서의 액정 배향)

  • Kim, Dai-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.821-825
    • /
    • 2013
  • Effect of multi-stacked layer (MSL), 0.1 mol (M) and 0.3 mol (M) hafnium oxide ($HfO_2$) alignment layers were fabricated via a solution-process for LCs orientation. The solutions were spin-coated and annealed in a furnace. MSL consists of three sub-layers using 0.1 M solution, mono-layer (ML) is composed of 0.3 M $HfO_2$ solution. Then ion-beam irradiation was treated with 1.8 keV for 2 min. $HfO_2$-based LC cells were investigated through photographs, pre-tilt angle using crystal rotation method, X-ray photoelectron spectroscopy (XPS) measurement, and surface roughness using atomic force microscopy(AFM) for their characteristic research. Good LC orientation characteristics were observed on MSL $HfO_2$ surface. The LC alignment mechanism on MSL $HfO_2$ and ML $HfO_2$ surfaces was attributed to van der Waals (VDW) interaction between the LC molecular and substrate surface.

Analysis of Wear Properties for $Ni_{3}Al$ Layer coated on Ferrous Materials by Diffusion Treatment after Combustion Synthesis at low Temperature (저온 연소합성 후 확산 열처리한 $Ni_{3}Al$ 금속간화합물 코팅층의 미끄럼 마모거동)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • Coating brittle intermetallic compounds on metal can enlarge the range of their use. It is found that intermetallic compound coating layers made by only combustion synthesis in an electric furnace have porous multi-phase structures containing several intermediate phases, even though the coating layers show good wear resistance. In this study, dense $Ni_{3}Al$ single phase layer corresponding to the initial composition of the mixed powder is coated on two different ferrous materials by the diffusing treatment after combustion synthesis. After- ward, sliding wear behaviors of the coating layer are evaluated in comparison with that of the coating layer with porous multi-phase structure made by only combustion synthesis. As a result, the wear properties of the coating layer composed of dense $Ni_{3}Al$ single phase are considerably improved at the range of low sliding speed com- pared with that of the coating layer with porous multi-phase structure, particularly in the running-in wear region. This is attributed to the fact that wear of the coating layer is progressed by shearing as a sequence of adhesion, not by occurring of pitting on the worn surface due to having dense structure without pores.

Characterization of GaN on GaN LED by HVPE method

  • Jung, Se-Gyo;Jeon, Hunsoo;Lee, Gang Seok;Bae, Seon Min;Kim, Kyoung Hwa;Yi, Sam Nyung;Yang, Min;Ahn, Hyung Soo;Yu, Young Moon;Kim, Suck-Whan;Cheon, Seong Hak;Ha, Hong Ju;Sawaki, Nobuhiko
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.128-131
    • /
    • 2012
  • The selective area growth light emitting diode on GaN substrate was grown using mixed-source HVPE method with multi-sliding boat system. The GaN substrate was grown using mixed-source HVPE system. Te-doped AlGaN/AlGaN/Mg-doped AlGaN/Mg-doped GaN multi-layers were grown on the GaN substrate. The appearance of epi-layers and the thickness of the DH was evaluated by SEM measurement. The DH metallization was performed by e-beam evaporator. n-type metal and p-type metal were evaporated Ti/Al and Ni/Au, respectively. At the I-V measurement, the turn-on voltage is 3 V and the differential resistance is 13 Ω. It was found that the SAG-LED grown on GaN substrate using mixed-source HVPE method with multi-sliding boat system could be applied for developing high quality LEDs.

Behavior of Pile Groups in Multi-layers Soil under Lateral Loading (다층지반에서 횡하중을 받는 군말뚝의 거동)

  • Kim, Yongmoon;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.85-90
    • /
    • 2012
  • This paper deals with the results for a numerical analysis of single piles and pile groups in multi-layers soil(granite soil-clay-granite soil) subjected to monotonous lateral loading using the ABAQUS finite element software. The investigated variables in this study include free head and embedded capped single pile, pile diameter (0.5m), pile length (10m), and pile groups. Numerical analyses were conducted by variation of spacing piles(s=3D, 4D, 5D) to compare the behaviour of single pile without cap and group pile. The $1{\times}3$ pile group(leading pile, middle pile, trail pile) was selected to investigate the individual pile and group lateral resistance, the distribution of the resistance among the piles. The analysis model of clay and the material of granite soil was modeled by using Druker-Prager constitutive relationship and existing treatise respectively. The pile was considered as a elastic circular concrete pile. As a result, the more pile space was extended, the value of P-multiplier is appeared to be less effective to leading pile. The lateral resistance of single-layer showed approximately 4-20% larger than the multi-layers.

Current Status in Light Trapping Technique for Thin Film Silicon Solar Cells (박막태양전지의 광포획 기술 현황)

  • Park, Hyeongsik;Shin, Myunghoon;Ahn, Shihyun;Kim, Sunbo;Bong, Sungjae;Tuan, Anh Le;Hussain, S.Q.;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.95-102
    • /
    • 2014
  • Light trapping techniques can change the propagation direction of incident light and keep the light longer in the absorption layers of solar cells to enhance the power conversion efficiency. In thin film silicon (Si) solar cells, the thickness of absorption layer is generally not enough to absorb entire available photons because of short carrier life time, and light induced degradation effect, which can be compensated by the light trapping techniques. These techniques have been adopted as textured transparent conduction oxide (TCO) layers randomly or periodically textured, intermediate reflection layers of tandem and triple junction, and glass substrates etched by various patterning methods. We reviewed the light trapping techniques for thin film Si solar cells and mainly focused on the commercially available techniques applicable to textured TCO on patterned glass substrates. We described the characterization methods representing the light trapping effects, texturing of TCO and showed the results of multi-scale textured TCO on etched glass substrates. These methods can be used tandem and triple thin film Si solar cells to enhance photo-current and power conversion efficiency of long term stability.

Seismic Behavior of a Bridge with Pile Bent Structures Subjected to Multi-Support Excitation (다지점 가진에 의한 단일형 현장타설말뚝 교량의 지진거동)

  • Sun, Chang-Ho;Ahn, Sung-Min;Kim, Ick-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.425-434
    • /
    • 2019
  • It is important to ensure the seismic safety of pile-bent bridges constructed in areas with thick soft ground consisting of various soil layers against seismic motion in these layers. In this study, several synthetic seismic waves that are compatible with the seismic design spectrum for rock sites were generated, and the ground acceleration history of each soil layer was obtained based on ground analyses. Using these acceleration histories, each soil layer was modeled using equivalent linear springs, and multi-support excitation analyses were performed using the input motion obtained at each soil layer. Due to the nonlinear behavior of the soft soil layers, the intensity of the input ground motion was not amplified, which resulted in the elastic behavior of the bridge. In addition, inputting the acceleration history obtained from a particular layer simultaneously into all the ground springs reduced the response. Therefore, the seismic performance of this type of bridge might be overestimated if multi-excitation analysis is not performed.

Characterization of Delta-Doped P-Type SiC Films (델타 도핑한 P형 SiC막의 평가)

  • Kim, Tae-Seong;Jeong, Woo-Seong;Nam, Hae-Kon
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.46-52
    • /
    • 1990
  • Novel a-Si solar cells with delta-doped(${\delta}x$-doped) P-layer have been fabricated to enhance the hole concentration of the P-layers. The ${\delta}-$doped P-layer consists of very thin B sheets of 0.1-0.5 atomic layers and undoped a-SiC multi-layers. B-layers were prepared by photo-CVD and pyrolysis technique. The structural, optical and electrical characteristics of the delta-doped P-layer films were evaluated by means of FTIR, AES and SIMS. As the results of this study, it was found that the ${\delta}$-doped P-layer showed much superior optical and electrical characteristics than those of conventional uniformly B-doped a-Si layers. 12.5% energy conversion efficiency was achieved for the Cell with ${\delta}$-doped P-layer.

  • PDF

The Effect of Energy-absorbing layers on Micro-patterning of Magnetic Metal Films using Nd:YAG Laser (Nd:YAG Laser를 이용한 자성금속막의 패턴 식각에 있어서 에너지 흡수층이 미치는 영향)

  • 이주현;채상훈;서영준;송재성;민복기;안승준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.538-544
    • /
    • 2000
  • The laser patterning of sputter-deposited CoNdZr/Cu/CoNbZr multi-layered films had been tried using Nd:YAG laser. However generally it is very difficult to remove metal films because of their high reflectance of the laser on the surfaces. As a counterproposal for this problem authors for the first time tried to deposit energy-absorbing layers on the metal films and then irradiated the laser on the surfaces of energy-absorbing layers. Here the energy-absorbing layers consisted of laser energy-absorbing fine powders and binding polymers. Three kinds of powders for the energy-absorbing layers had been used to see the difference in the pattern formation with the degree of laser energy absorption. They were electrically conductive silver powders insulating BaTiO$_3$powder and semiconducting carbon powder. Remarkable difference in width of the formed pattern and the roughness of pattern edge were observed with the characteristic of the powder for the energy-absorbing layer. The pattern width using carbon paste was about three times larger than that using BaTiO$_3$paste. It was observed that the energy-absorbing layer with carbon was the most effective on this micro-patterning.

  • PDF

Lane Detection System using CNN (CNN을 사용한 차선검출 시스템)

  • Kim, Jihun;Lee, Daesik;Lee, Minho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.163-171
    • /
    • 2016
  • Lane detection is a widely researched topic. Although simple road detection is easily achieved by previous methods, lane detection becomes very difficult in several complex cases involving noisy edges. To address this, we use a Convolution neural network (CNN) for image enhancement. CNN is a deep learning method that has been very successfully applied in object detection and recognition. In this paper, we introduce a robust lane detection method based on a CNN combined with random sample consensus (RANSAC) algorithm. Initially, we calculate edges in an image using a hat shaped kernel, then we detect lanes using the CNN combined with the RANSAC. In the training process of the CNN, input data consists of edge images and target data is images that have real white color lanes on an otherwise black background. The CNN structure consists of 8 layers with 3 convolutional layers, 2 subsampling layers and multi-layer perceptron (MLP) of 3 fully-connected layers. Convolutional and subsampling layers are hierarchically arranged to form a deep structure. Our proposed lane detection algorithm successfully eliminates noise lines and was found to perform better than other formal line detection algorithms such as RANSAC

Analysis on Current Distribution in Multi-layer HTSC Power Cable with Shield Layer (차폐층을 갖는 다층고온초전도 전력케이블의 전류분류 분석)

  • Lee Jong-Hwa;Lim Sung-Hun;Yim Seong-Woo;Du Ho-Ik;Han Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.273-279
    • /
    • 2006
  • High-$T_c$ superconducting (HTSC) power cable is one of the interesting parts in power application using HTSC wire. However, its stacked structure makes the current distribution between conducting layers non-uniform due to difference between self inductances of conducting layers and mutual inductances between two conducting layers, which results in lower current transmission capacity of HTSC power cable. In this paper, the transport current distribution between conducting layers was investigated through the numerical analysis for the equivalent circuit of HTSC power cable with a shield layer, and compared with the case of without a shield layer. The transport current distribution due to the increase of the contact resistance in each layer was improved. However, its magnetization loss increased as the contact resistance increased. It was confirmed from the analysis that the shield layer was contributed to the improvement of the current distribution between conducting layers if the winding direction and the pitch length were properly chosen.