• Title/Summary/Keyword: Multi-layered ground

Search Result 71, Processing Time 0.027 seconds

Simulations of Frequency-dependent Impedance of Ground Rods Considering Multi-layered Soil Structures

  • Lee, Bok-Hee;Joe, Jeong-Hyeon;Choi, Jong-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.531-537
    • /
    • 2009
  • Lightning has a broad frequency spectrum from DC to a few MHz. Consequently, the high frequency performance of grounding systems for protection against lightning should be evaluated, with the distributed parameter circuit model in a uniform soil being used to simulate grounding impedances. This paper proposes a simulation method which applies the distributed parameter circuit model for the frequency-dependent impedance of vertically driven ground rods by considering multi-layered soil structures where ground rods are buried. The Matlab program was used to calculate the frequency-dependent ground impedances for two ground rods of different lengths. As a result, an increase of the length of ground rod is not always followed by a decrease of grounding impedance, at least at a high frequency. The results obtained using the newly proposed simulation method considering multi-layered soil structures are in good agreement with the measured results.

The Calculation Method of Apparent Earth Pressure in Multi-Layered Ground with Clay and Sand (점토와 모래가 포함된 다층지반의 경험토압 산정방법에 관한 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Jin-Hae;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.21-34
    • /
    • 2021
  • In this study, to solve a problem that cannot consider the contribution effect of each layers when the apparent earth pressure in homogeneous ground is applied to multi-layered ground, the measured earth pressures at World were investigated and analyzed. It has been confirmed that the apparent earth pressure in mulit-layered ground is different from single ground and that the extra layer's contribution to the earth pressure cannot be considered. The conventional method of calculating the apparent earth pressure for single ground was extended to mulit-layered ground, and proposed and verified the applicable method for both single and mulit-layered ground. The proposed methods predicted the earth pressure closer to the measurements at the excavation depth of 0.1Z/H or below, and the prediction reliability was evaluated to be better than the conventional method. Among the proposed methods, the method of considering the area ratio of the active failure has a geotechnical validity and predicts the most similar results to the actual earth pressure. To confirm the applicability of the proposed methods, it was presented by comparing and analyzing the results of the proposed methods with the conventional method for the actual case.

Application on Pile Under Lateral Load in Multi Layered Ground Using the Strain Wedge Model (변형률 쐐기모델을 이용한 다층지반에서의 횡하중을 받는 말뚝의 적용성 평가)

  • Kim, Hongtaek;Lee, Jungjae;Chung, Jongmin;Yoon, Changjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.159-165
    • /
    • 2009
  • The Strain Wedge Model is useful method for horizontal bearing capacity calculation considering interaction of pile and ground deformation. However, application case of the Strain Wedge Model is rare and the strain wedge model of plenty of verification is needed on multi layered ground in Korea. In this present study, to conduct laboratory model test and numerical analysis for verification of Strain Wedge Model, adapt model that could describe the interaction of pile and ground deformation on multi layered ground. In model test, it was performed to estimate the behavior characteristics on pile under lateral load and to analyze the relationship between load and deformation. In addition, it was fulfilled to measure the skin friction on pile using strain gauge and to decide the ground passive resistance wedge using skin friction. Numerical analysis was performed to verify laboratory model test results.

  • PDF

2-D Consolidation Numerical Analysis of Multi_Layered Soils (다층 지반의 2차원 압밀 수치해석)

  • 김팔규;류권일;남상규;이재식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.467-474
    • /
    • 2000
  • The application of Terzaghi's theory of consolidation for analysing the settlement of multi-layered soils is not strictly valid because the theory involves an assumption that the soil is homogeneous. The settlement of stratified soils with confined aquifer can be analysed using numerical techniques whereby the governing differential equation is replaced by 2-dimensional finite difference approximations. The problems of discontinuous layer interface are very important in the algorithm and programming for the analysis of multi-layered consolidation using a numerical analysis, finite difference method(F.D.M.). Better results can be obtained by the process for discontinuous layer interface, since it can help consolidation analysis to model the actual ground The purpose of this paper provides an efficient computer algorithm based on numerical analysis using finite difference method(F.D.M) which account for multi-layered soils with confined aquifer to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically.

  • PDF

Seismic Response Analysis at Multi-Layered Ground (다층지반의 지진응답해석)

  • Kim, Yong-Seong;Lee, Dal-Won
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.329-332
    • /
    • 2002
  • In the present study, in order to apply a cyclic viscoelastic-viscoplastic constitutive model to multi-layered ground conditions during large earthquake, the numerical simulations of the 1995 Hyogoken Nanbu Earthquake at Port Island, Kobe, Japan, were performed by the seismic respons analysis. From the seismic response analysis, it was verified that a cyclic viscoelastic-viscoplastic constitutive model can give a good description of the damping characteristics of clay accurately during large event which induces plastic deformation in large strain range.

  • PDF

Grounding Grid Design Considering the Dangerous Voltage of Multi-layered Model in the Constrained Sites (제한된 부지 다층 대지구조에서 위험전압을 고려한 접지설계)

  • Son, Seok-Geum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.3
    • /
    • pp.139-144
    • /
    • 2013
  • In Korea, where most of the sites are narrow in space and their earth resistivity is relatively high, the spaces between grounding conductors are likely to be designed narrow in order to lower ground resistance and dangerous voltage below to the permitted safety values. In addition, ground nets are in the shape of square or rectangle depending on the location and size of the facilities and ground contact area, and inner conductors are laid out in grids like the pattern of nets. Nevertheless, with the existing designs, the marginal voltage for safety gets higher as the area is extended further outside, in comparison with that of inner mesh grounding, thus causing much difficulty maintaining them equipotential, and there exist limits in the burial, grounding grid design considering the dangerous voltage of muti-layered model in the constrained sites, was studied.

The Settlement Behavior Analysis of SCP of Multi-Layered Ground in Incheon (인천지역 다층지반에 시공된 SCP의 침하거동 분석)

  • Yoon, Won-Sub;Kim, Jong-Kook;Park, Sang-Jun;Cho, Chul-Hyun;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1042-1050
    • /
    • 2008
  • In this study, SCP method was used by purpose to improve loose sand and soft clay that is drilled Sand Compaction Pile in underground. Settlement behavior of field analyzed through SCP method. When sand Compaction Pile drilled in clay, forming composite ground that foundation and Sand Compaction Pile behavior. According to SCP method can expect bearing capacity improvement, Settlement reduction, lateral flow protection. SCP increase the consolidation settlement of ground and it reduce settlement for that purpose increase liquefaction resistance, lateral Resistance. Because SCP had been widely used for sand. Area of Inchon-A by sand compose clay and silt to upper Ground and compose soft clay to under ground. After pre-loading, it measured settlement by extensometer and settlement extensometer that purpose of ground improvement with 13% in replacement ratio. The result analyzed settlement behavior is similar to Multi-layered Ground that it happened to elastic settlement at upper ground and to consolidation settlement at under ground.

  • PDF

Layer Interface Analysis of Multi-Layered Soils by Numerical Methods (수치해석에 의한 다층토 압밀의 경계요소면 해석)

  • 김팔규;류권일;구기욱;남상규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.349-356
    • /
    • 1999
  • In general, the term soft ground includes clayey soils, which have large compressibility and small shear resistance due to the external load. All process of consolidation in compressible soils can be explained in terms of a transfer of load from an incompressible pore-water to a compressible soil structure. Therefore, one of the most important subjects about the characteristics of the time-dependent consolidation of the clay foundation by the change of load may be the presumption of the final settlement caused by consolidation and the degree of consolidation according to the time. The problems of discontinuous layer interface are very important in the algorithm and programming for the analysis of multi-layered soils using a numerical analysis, finite difference method. Better results can be obtained by the Process for discontinuous layer interface, since it can help consolidation analysis to model the actual ground. The purpose of this paper Provides an efficient computer algorithm based on numerical analysis using finite difference method(F.D.M.) which account for multi-layered soils to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically.

  • PDF

2-D Consolidation Numerical Analysis of Multi_Layered Soils (II) (다층 지반의 2차원 압밀 수치해석 II)

  • 류권일;김팔규;구기욱;남상규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.665-672
    • /
    • 2000
  • The problems of discontinuous layer interface are very important in the algorithm and programming for the analysis of multi-layered consolidation using a numerical analysis, finite difference method(F.D,M.). Better results can be obtained by the process for discontinuous layer interface, since it can help consolidation analysis to model the actual ground Explicit method is simple for analysis algorithm and convenient for use except for applying the operator Crank-Nicolson method represents implicit method, which have different analysis method according to weighting factor. This method uses different algorithm according to dimension. And, this paper uses alternative direction implicit method. The purpose of this paper provides an efficient computer algorithm based on numerical analysis using finite difference method which account for multi-layered soils with confined aquifer to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically.

  • PDF

Numerical analysis of non-uniform segmental lining design effects on large-diameter tunnels in complex multi-layered strata

  • Joohyun Park;Seok-Jun Kang;Jun-Beom An;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • v.38 no.6
    • /
    • pp.553-569
    • /
    • 2024
  • In recent tunneling projects, encounters with multi-layered strata have become more frequent as the desired scale of tunneling increases. Despite substantial practical experience, the design of large-diameter shield-driven tunnels often simplifies the surrounding ground as uniform, overlooking the complexities introduced by non-uniform geotechnical factors. This study comparatively analyzed the influence of design factors, particularly segment stiffness and joint parameters, on segmental lining behavior in layered ground conditions using numerical methods. A comprehensive parametric study revealed the significant impact of deformative interaction between the lining and the soft top soil layer on overall tunnel behavior. Permitting lining deformation in the soft soil layer effectively mitigated the induced internal forces but resulted in considerable tunnel lining convergence, adopting a peanut-shaped appearance. From a practical design perspective, application of a soft segment with lower stiffness near the stiff soil layer is an economically advantageous approach, alleviating internal forces within an acceptable convergence level. Notably, around the interfaces between soil layers with different stiffnesses, the induced internal forces in the lining were minimized based on joint rotational stiffness and location. This indicates the possibility of achieving an optimal design for segmental lining joints under layered ground conditions. Additionally, a preliminary design method was proposed, which sequentially optimizes parameters for joints located near soil layer interfaces. Subsequently, a specialized design based on the proposed method for complex multi-layered strata was compared with a conventional design. The results confirmed that the internal force was effectively relieved at an allowable lining deflection level.