• 제목/요약/키워드: Multi-layered Composite

검색결과 97건 처리시간 0.024초

멱급수 반대칭하중을 받는 다층재 중앙균열의 응력세기계수 (Stress Intensity Factor for Multi-Layered Material Under Polynomial Anti-Symmetric Loading)

  • 이강용;김성호;박문복
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3219-3226
    • /
    • 1994
  • A model is constructed to evaluate the stress intensity factors for a center crack subjected to polynomial anti-symmetric loading in a layered material. A Fredholm integral equation is derived by Fourier integral transform method. The integral equation is numerically analyzed to evaluate the effects of the ratios of shear modulus, Poisson's ratio and crack length to layer thickness as well as the number of layers on the stress intensity factor. The stress intensity factors are approached to constant values as the number of layers increase and decrease as the polynomial power of the loading increase. In case of the E-glass/Epoxy composite, dimensionless stress intensity factor is affected by cracked-resin layer thickness.

천공 다층 복합 바닥재의 모델링 및 성능 평가 (Modeling and Performance Evaluation of Muti-layered Composite Floor Plates with Holes)

  • Yoo, Hong-Hee;Lee, Chang-Guen;Yoo, Hong-Geol;Ju, Young-Jun;Cho, Jung-Eun
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.367.1-367
    • /
    • 2002
  • Recently, the noise environmental issue in compound residential areas like apartments becomes a very critical factor fer the building designers. In order to satisfy the customer need to live in a quiet environment, several interior structures for buildings are being introduced. The multi-layered composite floor plate is one of them. This structure is designed to prevent the noise generated by an object collision. (omitted)

  • PDF

세라믹/유리섬유강화복합재 적층판의 고속충돌에 의한 파괴거동 (Fracture Mechanism of Ceramic/Glass-fiber-reinforced-composites Laminate by High Velocity Impact)

  • 정우균;이우일;김희재;권정원;안성훈
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.170-176
    • /
    • 2006
  • Multi-layered laminate made of ceramic/composite have been developed to prevent penetration by high velocity impact. In this study, three-layered plates consisted of 1) cover layer (glass fiber reinforced polymer), 2) $Al_{2}O_{3}$, ceramic plate, and 3) backing plate (glass fiber reinforced polymer) were fabricated with various conditions and tested for their ballistic protection characteristic. The ceramic composite laminates, with thin backing plate, were completely penetrated by armor piercing projectile. The plate with inserted rubber between ceramic and backing plate showed excellent ballistic protection, though completely penetrated by the second shoot.

Short- and long-term analyses of composite beams with partial interaction stiffened by a longitudinal plate

  • Ranzi, Gianluca
    • Steel and Composite Structures
    • /
    • 제6권3호
    • /
    • pp.237-255
    • /
    • 2006
  • This paper presents a novel analytical formulation for the analysis of composite beams with partial shear interaction stiffened by a bolted longitudinal plate accounting for time effects, such as creep and shrinkage. The model is derived by means of the principle of virtual work using a displacement-based formulation. The particularity of this approach is that the partial interaction behaviour is assumed to exist between the top slab and the joist as well as between the joist and the bolted longitudinal stiffening plate, therefore leading to a three-layered structural representation. For this purpose, a novel finite element is derived and presented. Its accuracy is validated based on short-and long-term analyses for the particular cases of full shear interaction and partial shear interaction of two layers for which solutions in closed form are available in the literature. A parametric study is carried out considering different stiffening arrangements to investigate the influence on the short-and long-term behaviour of the composite beam of the shear connection stiffness between the concrete slab and the steel joist, the stiffness of the plate-to-beam connection, the properties of the longitudinal plate and the concrete properties. The values of the deflection obtained from the finite element simulations are compared against those calculated using the effective flexural rigidity in accordance with EC5 guidelines for the behaviour of elastic multi-layered beams with flexible connection and it is shown how the latter well predicts the structural response. The proposed numerical examples highlight the ease of use of the proposed approach in determining the effectiveness of different retrofitting solutions at service conditions.

대용량 액체 수소 저장탱크를 위한 다층단열재의 단열성능 분석 (Adiabatic Performance of Layered Insulating Materials for Bulk LH2 Storage Tanks)

  • 김경호;신동환;김용찬;강상우
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.642-650
    • /
    • 2016
  • One of the most feasible solution for reducing the excessive energy consumption and carbon dioxide emission is usage of more efficient fuel such as hydrogen. As is well known, there are three viable technologies for storing hydrogen fuel: compressed gas, metal hydride absorption, and cryogenic liquid. In these technologies, the storage for liquid hydrogen has better energy density by weight than other storage methods. However, the cryogenic liquid storage has a significant disadvantage of boiling losses. That is, high performance of thermal insulation systems must be studied for reducing the boiling losses. This paper presents an experimental study on the effective thermal conductivities of the composite layered insulation with aerogel blankets($Cryogel^{(R)}$ Z and $Pyrogel^{(R)}$ XT-E) and Multi-layer insulation(MLI). The aerogel blankets are known as high porous materials and the good insulators within a soft vacuum range($10^{-3}{\sim}1$ Torr). Also, MLI is known as the best insulator within a high vacuum range(<$10^{-6}{\sim}10^{-3}$ Torr). A vertical axial cryogenic experimental apparatus was designed to investigate the thermal performance of the composite layered insulators under cryogenic conditions as well as consist of a cold mass tank, a heat absorber, annular vacuum space, and an insulators space. The composite insulators were laminated in the insulator space that height was 50 mm. In this study, the effective thermal conductivities of the materials were evaluated by measuring boil-off rate of liquid nitrogen and liquid argon in the cold mass tank.

다층 압전 필름의 전극 패턴 최적화를 통한 2차원 구조물에서의 모달 변환기 구현 (Design of Modal Transducer in 2D Structure Using Multi-Layered PVDF Films Based on Electrode Pattern Optimization)

  • 유정규;김지철;김승조
    • 소음진동
    • /
    • 제8권4호
    • /
    • pp.632-642
    • /
    • 1998
  • A method based on finite element discretization is developed for optimizing the polarization profile of PVDF film to create the modal transducer for specific modes. Using this concept, one can design the modal transducer in two-dimensional structure having arbitrary geometry and boundary conditions. As a practical means for implementing this polarization profile without repoling the PVDF film the polarization profile is approximated by optimizing electrode patterns, lamination angles, and poling directions of the multi-layered PVDF transducer. This corresponds to the approximation of a continuous function using discrete values. The electrode pattern of each PVDF layer is optimized by deciding the electrode of each finite element to be used or not. Genetic algorithm, suitable for discrete problems, is used as an optimization scheme. For the optimization of each layers lamination angle, the continuous lamination angle is encoded into discrete value using binary 5 bit string. For the experimental demonstration, a modal sensor for first and second modes of cantilevered composite plate is designed using two layers of PVDF films. The actuator is designed based on the criterion of minimizing the system energy in the control modes under a given initial condition. Experimental results show that the signals from residual modes are successfully reduced using the optimized multi-layered PVDF sensor. Using discrete LQG control law, the modal peaks of first and second modes are reduced in the amount of 12 dB and 4 dB, resepctively.

  • PDF

섬유강화 복합재료로 구성된 전파흡수구조재의 설계 및 특성 (Design and Properties of Microwave Absorbing Structures Composed of Fiber Reinforced Composites)

  • 김상영;김성수
    • 한국전자파학회논문지
    • /
    • 제12권6호
    • /
    • pp.1002-1008
    • /
    • 2001
  • 본 논문은 전파흡수기능을 갖는 경량, 고강도 고분자 복합재료의 재료 설계 및 전각흡수특성에 관한 연구이다. 전송선로 이론을 도입하여 다층구조 전파흡수체의 반사감쇠량 계산에 필요한 이론식을 제시하고, 각 층의 재료정수 및 두께의 함수로 계산한 전파흡수능 결과에 근거하여 각 층의 재질에 적합한 복합재료를 제시하였다. 본 연구에서 가장 중요한 결과는 페라이트 충진재를 사용하지 않은 3층 구조 (표면층/중간층/배면층)의 전파흡수구조재를 설계하였다는 점이다. 표면층 재료로는 저유전율 특성의 유리섬유 복합재료를 사용하고, 중간층 및 배면층에는 유전상수 및 도전손실이 큰 탄소섬유 복합재료를 사용하여 4~12 GHz 주파수 범위에서 10 dB 이상의 전파흡수특성을 얻을 수 있었다. 이에 반하여 흡수층/반사층으로 구성되는 2층 구조의 전파흡수구조재에서는 흡수층에 페라이트 충진재의 사용이 필수적이었다. 반사층 재질로 탄소섬유 복합재료를 사용하고, 횹수층 유리섬유 복합재료에 페라이트 충진재를 약 40 wt% 첨가함으로써 4~12 GHz 주파수 범위에서 10 dB 이상의 전파흡수특성을 얻을 수 있었다.

  • PDF

적층 복합재 판을 이용한 전자기파 흡수 구조체의 설계 (Design and Analysis of Electromagnetic Wave Absorbing Structure Using Layered Composite Plates)

  • 오정훈;홍창선;오경섭;김천곤;이동민
    • Composites Research
    • /
    • 제15권2호
    • /
    • pp.18-23
    • /
    • 2002
  • 군사적 목적뿐만 아니라 상업적 목적에서도 레이더나 기타 전자파를 방출하는 기기들로부터 생성되는 전자파의 흡수 또는 차폐는 매우 중요한 일이다. 본 연구에서는 다른 유전적 성질을 가지는 복합재층을 배열하여 전자기파의 반사를 최소화하는 연구를 수행하였다. Glass fabric/epoxy에 전도성을 가지는 카본블랙 분체를 혼합한 복합재와 Carbon fabric/epoxy 복합재 대만 유전성질을 측정하였고, 이를 이용하여 X-band(8.2 GHz-l2.4GHz)에 대한 전자기파 반사의 최소화 구조를 구성하였다. 두께2.6mm의 다층 구조로 최대 30dB 이상의 반사 손실과 최대 흡수 주파수로부터 2GHz 주파수 대역에 걸쳐 10dB이상의 반사손실을 일으킬 수 있었다.

적층 복합재 팬-블레이드의 적층각도 최적화 설계 (Design of optimal fiber angles in the laminated composite fan blades)

  • 정재연;조영수;하성규
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1765-1772
    • /
    • 1997
  • The layered composites have a character to change of structure stiffness with respect to the layup angles. The deformations in the fan-blades to be initially designed by considering efficiency and noise, etc., which arise due to the pressure during the fan operation, can make the fan inefficient. Thus, so as to minimize the deformations of the blades, it is needed to increase the stiffness of the blades. An investigation has been performed to develop the three dimensional layered composite shell element with the drilling degree of freedom and the optimization module for finding optimal layup angles with sensitivity analysis. And then they have been verified. In this study, the analysis model is engine cooling fan of automobile. In order to analyzes the stiffness of the composite fan blades, finite element analysis is performed. In addition, it is linked with optimal design process, and then the optimal angles that can maximize the stiffness of the blades are found. In the optimal design process, the deformations of the blades are considered as multiobjective functions, and this results minimum bending and twisting simultaneously.

Delamination growth analysis in composite laminates subjected to low velocity impact

  • Kharazan, Masoud;Sadr, M.H.;Kiani, Morteza
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.387-403
    • /
    • 2014
  • This paper presents a high accuracy Finite Element approach for delamination modelling in laminated composite structures. This approach uses multi-layered shell element and cohesive zone modelling to handle the mechanical properties and damages characteristics of a laminated composite plate under low velocity impact. Both intralaminar and interlaminar failure modes, which are usually observed in laminated composite materials under impact loading, were addressed. The detail of modelling, energy absorption mechanisms, and comparison of simulation results with experimental test data were discussed in detail. The presented approach was applied for various models and simulation time was found remarkably inexpensive. In addition, the results were found to be in good agreement with the corresponding results of experimental data. Considering simulation time and results accuracy, this approach addresses an efficient technique for delamination modelling, and it could be followed by other researchers for damage analysis of laminated composite material structures subjected to dynamic impact loading.