• Title/Summary/Keyword: Multi-irradiation

Search Result 143, Processing Time 0.027 seconds

Optimization for the Cylindrical Structure with Multi-Holes Under Thermal Loading (열하중을 받는 다공원통구조물의 최적화)

  • Lee Young-Shin;Choi Young-Jin;Kang Young-Hwan;Lee Jong-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1509-1516
    • /
    • 2004
  • During fuel irradiation tests, all parts of cylindrical structure with multiple holes act as heat sources due to fussion heat and ${\gamma}$-flux. The high temperature is especially generated in the center of pellet. Because of the high temperature, many problems occur, such as melting of pellet and declining of heat transfer between cladding and coolant. In this paper, it is attempted to minimize the temperature of pellet using optimization method. For thermal and optimization analysis of structure, the finite element method code, ANSYS 5.7 is used. Through the optimum design process, the temperature of SBT diminished 10% and the temperature of OBT diminished 18%.

A study on the disinfection performance of indoor microorganism using energy consumption analysis for indoor bio-safety (건물 재실자의 미생물 안전을 위한 면역건물 기술의 에너지 사용 연구)

  • Choi, Sang-Gon
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.4
    • /
    • pp.111-118
    • /
    • 2009
  • In this study the real situation of apartment house in seoul is reproduced with multi-zone modeling program CONTAM2.4. This model include disinfection system which is consist of dilution, filtration, UVGI(ultra violet germicidal irradiation). It's energy consumption was also analyzed through the linked model of CONTAM and TRNSYS according to the combination of components. The comparison of total energy consumption through energy analysis revealed that adjusting the air change rate of the UVGI air sterilizer to maintain the same indoor microbe removal capability was more advantageous in terms of energy consumption.

Synthesis and Characterization of CNT/TiO2 Composites Thermally Derived from MWCNT and Titanium(IV) n-Butoxide

  • Oh, Won-Chun;Chen, Ming-Liang
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.159-164
    • /
    • 2008
  • Two kinds of CNT/TiO2 composite photocatalysts were synthesized with multi-walled carbon nanotubes (MWCNTs) and titanium(IV) n-butoxide (TNB) by a MCPBA oxidation method. Since MWCNTs had charge transfer and semiconducting, the CNT/TiO2 composite shows a good photo-degradation activity. The XRD patterns reveal that only anatase phase can be identified for MCT composite, but the HMCT composite synthesized with HCl treatment was observed the mixed phase of anatase and rutile. The EDX spectra were shown the presence as major elements of Ti with strong peaks. From the SEM results, the sample MCT and HMCT synthesized by the thermal decomposition with TNB show a homogenous sample with only individual MWCNTs covered with TiO2 without any jam-like aggregates between CNTs and TiO2. From the photocatalytic results, we could be suggested that the excellent activity of the CNT/TiO2 composites for organic dye and UV irradiation time could be attributed to combination effects between TiO2 and MWCNTs with plausible photodegradation mechanism.

The Simplified LDD Process of LTPS TFT on PI Substrate

  • Hu, Guo-Ren;Kung, Bo-Cheng;He, King-Yuan;Cheng, Chi-Hong;Huang, Yeh-Shih;Liu, Chan-Jui;Tsai, Cheng-Ju;Huang, Jung-Jie
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.641-644
    • /
    • 2008
  • Traditional LTPS TFT needs additional LDD process to decrease leakage current. However the fabrication process is no suitable for PI substrate. Additional laser multi-irradiation will damage the poly-Si to cause the TFT electrical degrade. Therefore we propose the simplified process to activate the $N^+$ and $N^-$ at the same time.

  • PDF

Characteristics of the photoinduced anisotropy(PA) in Ag/AsGeSeS multilayer thin films (Ag/AsGeSeS 다층박막의 광유기 이방성(PA) 특성)

  • Park, Jong-Hwa;Na, Sun-Woong;Yeo, Cheol-Ho;Park, Jeong-Il;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.362-365
    • /
    • 2001
  • The chalcogenide glasses of thin films have the superior property of photoinduced anisotrophy(PA). In this study, we observed the linear dichroism(D) using the irradiation with polarized He-Ne laser light, in the $Ag/As_{40}Ge_{10}Se_{15}S_{35}$ multi-layer. Mutilayer structures formed by alternating metal(Ag) a chalcogenide$(As_{40}Ge_{10}Se_{15}S_{35})$. Such multilayer structures have a greater sensitivity to illumination am larger dichroism in comparison the conventional double layer structure. Also new phenomena are discovered. These results will be show a capability of new method that suggested more improvement of photoinduced anisotropy property.

  • PDF

Wireless Graphene Oxide-CNT Bilayer Actuator Controlled with Electromagnetic Wave (전자기웨이브에 의해 제어되는 무선형 그래핀-카본나노튜브 액츄에이터)

  • Xu, Liang;Oh, Il-Kwon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.282-284
    • /
    • 2011
  • Based on graphene oxide and multi-walled carbon nanotube layers, a wireless bi-layer actuator that can be remotely controlled with an electromagnetic induction system has been developed. The graphene-based bi-layer actuator exhibits a large one-way bending deformation under eddy current stimuli due to asymmetrical responses originating from the temperature difference of the two different carbon layers. In order to validate one-way bending actuation, the coefficients of thermal expansion of carbon nanotube and graphene oxide are mathematically formulated in this study based on the atomic bonding energy related to the bonding length. The newly designed graphene-based bi-layer actuator is highly sensitive to electromagnetic wave irradiation thus it can trigger a new actuation mode for the realization of remotely controllable actuators and is expected to have potential applications in various wireless systems.

  • PDF

A Study on Surface Treatment for Rubber Materials with Low Friction Factor

  • Li, Xiang-Xu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.43-48
    • /
    • 2016
  • Multi-Surface (MS) treatment is a new technique of surface treatment to reduce the static friction factor on the surface of rubber. MS treatments include 4 methods which names are MS-V (UV-irradiation on the rubber surface), MS-M (doing the chemical reaction with double bond of rubber), MS-Q (dilution of rubber surface by silicone surfactant), and MS-P (coating and heating of rubber surface). The experiment and test of every MS-treatment had been carried out using acrylonitrile-butadiene rubber (NBR), ethylene-propylene-diene rubber (EPDM), and chlorosulphonated rubber (CSM) as rubber materials. It had introduced the steps of every MS-treatment process and the result of the properties test. From the research, it was found that the best method was MS-V treatment because it suited all the samples and the effect was obviously.

Characteristics of the photoinduced anisotropy(PA) in Ag/AsGeSeS multilayer thin films (Ag/AsGeSeS 다층박막의 광유기 이방성(PA) 특성)

  • 박종화;나선웅;여철호;박정일;이영종;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.362-365
    • /
    • 2001
  • The chalcogenide glasses of thin films have the superior property of photoinduced anisotrophy(PA). In this study, we observed the linear dichroism(D) using the irradiation with polarized He-Ne laser light, in the Ag/As$\sub$40/Ge$\sub$10/Se$\sub$15/S$\sub$35/ multi-layer. Mutilayer structures farmed by alternating metal(Ag) a chalcogenide(As$\sub$40/Ge$\sub$10/Se$\sub$15/S$\sub$35/). Such multilayer structures have a greater sensitivity to illumination and larger dichroism in comparison the conventional double layer structure. Also new phenomena are discovered. These results will be show a capability of new method that suggested more improvement of photoinduced anisotropy property.

  • PDF

Practical Surface Sculpting Method for the Fabrication of Predefined Curved Structures using Focused Ion Beam

  • Kim, Heung-Bae
    • Applied Science and Convergence Technology
    • /
    • v.25 no.5
    • /
    • pp.92-97
    • /
    • 2016
  • Surface erosion using focused ion beam irradiation is the most promising technology for the realization of micro/nanofabrication. However, accurate fabrication of predefined structures is still challenging. This article introduces a single step surface driving method to fabricated predefined curved structures. The previously reported multi step surface driving method (MSDM) has been modified so that a single ion dose profile can be used instead of multiple ion dose profiles. Experimental realization of the method is presented with the fabrication of predefined curved surfaces as well as reference to surface propagation theory. For the purpose of verification, simulations are performed on the basis of a sound mathematical model.

A Study on Sapphire Wafer Scribing Using Picosecond Pulse laser (피코초 펄스 레이저를 이용한 사파이어 웨이퍼 스크라이빙에 관한 연구)

  • Moon, Jae-Won;Kim, To-Hoon
    • Laser Solutions
    • /
    • v.8 no.2
    • /
    • pp.7-12
    • /
    • 2005
  • The material processing of UV nanosecond pulse laser cannot be avoided the material shape change and contamination caused by interaction of base material and laser beam. Nowadays, ultra short pulse laser shorter than nanosecond pulse duration is used to overcome this problem. The advantages of this laser are no heat transfer, no splashing material, no left material to the adjacent material. Because of these characteristics, it is so suitable for micro material processing. The processing of sapphire wafer was done by UV 355nm, green 532nm, IR 1064nm. X-Y motorized stage is installed to investigate the proper laser beam irradiation speed and cycles. Also, laser beam fluence and peak power are calculated.

  • PDF