• Title/Summary/Keyword: Multi-hop network

Search Result 582, Processing Time 0.025 seconds

Energy-efficient Multi-hop Communitation Strategy in Bluetooth Low Energy (Bluetooth Low Energy에서의 전송 효율적 멀티 홉 전송 전략)

  • Byun, Hyungho;Oh, Youngjune;Kim, Chong-kwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.77-80
    • /
    • 2017
  • One of the fundamental limits of Bluetooth Low Energy(BLE) is that the data transmission is available via singlehop connection. In this research, we suggested the stable multihop transmission method to overcome this limitation. In multihop connection situation, multiple singlehop connection should be made and disconnected dynamically. Therefore, we stored the data within the GATT layer and tried to send it dynamically. We divided whole process as 4 states, and let each nodes transfers around each states to make data connection safely. Also, we set the transfer policy between each states during the transmission to make a robust system. From the experiment in real-time environment, we proved that our method showed high rate of packet delivery in a multihop network, which consists of more than 3 nodes.

  • PDF

Operating μTESLA based on Variable Key-Slot in Multi-Hop Unattended WSN (멀티 홉 Unattended WSN에서 가변 키 슬롯 기반 μTESLA의 운영)

  • Choi, JinChun;Kang, Jeonil;Nyang, DaeHun;Lee, KyungHee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.223-233
    • /
    • 2014
  • As a broadcast message authentication method in wireless sensor networks, ${\mu}$TESLA enables sensor nodes efficiently authenticate message from base station (BS). However, if we use ${\mu}$TESLA that has very short length of key slot in unattended wireless sensor network (UWSN), sensors may calculate a huge amount of hashs at once in order to verify the revealed secret key. In contrast, if we set the length of ${\mu}$TESLA's key slot too long in order to reduce the amount of hashs to calculate, BS should wait out the long slot time to release key. In this paper, we suggest variable key slot ${\mu}$TESLA in order to mitigate the problem. As showing experiment results, we prove that our suggestion improve sensor node's response time and decrease of number of hash function calculation.

Adaptive Link Quality Estimation in Wireless Sensor Networks (무선 센서 네트워크에서 적응적인 링크 품질 측정)

  • Lee, Jung-Wook;Won, Kwang-Ho;Chung, Kwang-Sue
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.556-560
    • /
    • 2010
  • In the wireless sensor networks using a multi-hop, quality variation of links occurs irregularly due to the hardware restriction and environmental factor. If an appropriate route, which is affected by the quality variation, is not selected. Traditionally, a beacon is periodically broadcasted and the link quality is estimated. However, the periodically beacon based scheme cannot efficiently estimate the quality of the link changing irregularly. In this paper, a scheme to estimate the link quality adaptively according to network state is proposed. When the link quality changes, the scheme adapts to a change agilely and packet losses are reduced. When there is no change of the link quality, the link quality is estimated in the long period and the energy consumption is reduced. Through performance evaluations, we prove that our adaptive link estimation scheme improves the energy efficiency and packet reception ratio than the periodic estimation scheme.

Modified LEACH Protocol improving the Time of Topology Reconfiguration in Container Environment (컨테이너 환경에서 토플로지 재구성 시간을 개선한 변형 LEACH 프로토콜)

  • Lee, Yang-Min;Yi, Ki-One;Kwark, Gwang-Hoon;Lee, Jae-Kee
    • The KIPS Transactions:PartC
    • /
    • v.15C no.4
    • /
    • pp.311-320
    • /
    • 2008
  • In general, routing algorithms that were applied to ad-hoc networks are not suitable for the environment with many nodes over several thousands. To solve this problem, hierarchical management to these nodes and clustering-based protocols for the stable maintenance of topology are used. In this paper, we propose the clustering-based modified LEACH protocol that can applied to an environment which moves around metal containers within communication nodes. In proposed protocol, we implemented a module for detecting the movement of nodes on the clustering-based LEACH protocol and improved the defect of LEACH in an environment with movable nodes. And we showed the possibility of the effective communication by adjusting the configuration method of multi-hop. We also compared the proposed protocol with LEACH in four points of view, which are a gradual network composition time, a reconfiguration time of a topology, a success ratio of communication on an containers environment, and routing overheads. And to conclude, we verified that the proposed protocol is better than original LEACH protocol in the metal containers environment within communication of nodes.

A Robust Energy Saving Data Dissemination Protocol for IoT-WSNs

  • Kim, Moonseong;Park, Sooyeon;Lee, Woochan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5744-5764
    • /
    • 2018
  • In Wireless Sensor Networks (WSNs) for Internet of Things (IoT) environment, fault tolerance is a most fundamental issue due to strict energy constraint of sensor node. In this paper, a robust energy saving data dissemination protocol for IoT-WSNs is proposed. Minimized energy consumption and dissemination delay time based on signal strength play an important role in our scheme. The representative dissemination protocol SPIN (Sensor Protocols for Information via Negotiation) overcomes overlapped data problem of the classical Flooding scheme. However, SPIN never considers distance between nodes, thus the issue of dissemination energy consumption is becoming more important problem. In order to minimize the energy consumption, the shortest path between sensors should be considered to disseminate the data through the entire IoT-WSNs. SPMS (Shortest Path Mined SPIN) scheme creates routing tables using Bellman Ford method and forwards data through a multi-hop manner to optimize power consumption and delay time. Due to these properties, it is very hard to avoid heavy traffic when routing information is updated. Additionally, a node failure of SPMS would be caused by frequently using some sensors on the shortest path, thus network lifetime might be shortened quickly. In contrast, our scheme is resilient to these failures because it employs energy aware concept. The dissemination delay time of the proposed protocol without a routing table is similar to that of shortest path-based SPMS. In addition, our protocol does not require routing table, which needs a lot of control packets, thus it prevents excessive control message generation. Finally, the proposed scheme outperforms previous schemes in terms of data transmission success ratio, therefore our protocol could be appropriate for IoT-WSNs environment.

A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT

  • Tandon, Aditya;Kumar, Pramod;Rishiwal, Vinay;Yadav, Mano;Yadav, Preeti
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1317-1341
    • /
    • 2021
  • Nowadays, the Internet of Things (IoT) is adopted to enable effective and smooth communication among different networks. In some specific application, the Wireless Sensor Networks (WSN) are used in IoT to gather peculiar data without the interaction of human. The WSNs are self-organizing in nature, so it mostly prefer multi-hop data forwarding. Thus to achieve better communication, a cross-layer routing strategy is preferred. In the cross-layer routing strategy, the routing processed through three layers such as transport, data link, and physical layer. Even though effective communication achieved via a cross-layer routing strategy, energy is another constraint in WSN assisted IoT. Cluster-based communication is one of the most used strategies for effectively preserving energy in WSN routing. This paper proposes a Bio-inspired cross-layer routing (BiHCLR) protocol to achieve effective and energy preserving routing in WSN assisted IoT. Initially, the deployed sensor nodes are arranged in the form of a grid as per the grid-based routing strategy. Then to enable energy preservation in BiHCLR, the fuzzy logic approach is executed to select the Cluster Head (CH) for every cell of the grid. Then a hybrid bio-inspired algorithm is used to select the routing path. The hybrid algorithm combines moth search and Salp Swarm optimization techniques. The performance of the proposed BiHCLR is evaluated based on the Quality of Service (QoS) analysis in terms of Packet loss, error bit rate, transmission delay, lifetime of network, buffer occupancy and throughput. Then these performances are validated based on comparison with conventional routing strategies like Fuzzy-rule-based Energy Efficient Clustering and Immune-Inspired Routing (FEEC-IIR), Neuro-Fuzzy- Emperor Penguin Optimization (NF-EPO), Fuzzy Reinforcement Learning-based Data Gathering (FRLDG) and Hierarchical Energy Efficient Data gathering (HEED). Ultimately the performance of the proposed BiHCLR outperforms all other conventional techniques.

An Adaptive Relay Node Selection Scheme for Alert Message Propagation in Inter-vehicle Communication (차량간 통신에서 긴급 메시지 전파를 위한 적응적 릴레이 노드 선정기법)

  • Kim, Tae-Hwan;Kim, Hie-Cheol;Hong, Won-Kee
    • The KIPS Transactions:PartC
    • /
    • v.14C no.7
    • /
    • pp.571-582
    • /
    • 2007
  • Vehicular ad-hoc networks is temporarily established through inter-vehicle communication without any additional infrastructure aids. It requires a immediate message propagation because it mainly deals with critical traffic information such as traffic accidents. The distance-based broadcast scheme is one of the representative broadcast schemes for vehicular ad-hoc network. In this scheme, a node to disseminate messages is selected based on a distance from a source node. However, a message propagation delay will be increased if the relay nodes are not placed at the border of transmission range of the source node. In particular, when the node density is low, the message propagation delay is getting longer. In this paper, we propose a time-window reservation based relay node selection scheme. A node receiving the alert message from the source node has its time-window and randomly selects its waiting time within the given time-window range. A proportional time period of the given time-window is reserved in order to reduce the message propagation delay. The experimental results show that the proposed scheme has shorter message propagation delay than the distance-based broadcast scheme irrespective of node density in VANET. In particular, when the node density is low, the proposed scheme shows about 26% shorter delay and about 46% better performance in terms of compound metric, which is a function of propagation latency and network traffic.

Cluster-based Delay-adaptive Sensor Scheduling for Energy-saving in Wireless Sensor Networks (센서네트워크에서 클러스터기반의 에너지 효율형 센서 스케쥴링 연구)

  • Choi, Wook;Lee, Yong;Chung, Yoo-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.47-59
    • /
    • 2009
  • Due to the application-specific nature of wireless sensor networks, the sensitivity to such a requirement as data reporting latency may vary depending on the type of applications, thus requiring application-specific algorithm and protocol design paradigms which help us to maximize energy conservation and thus the network lifetime. In this paper, we propose a novel delay-adaptive sensor scheduling scheme for energy-saving data gathering which is based on a two phase clustering (TPC). The ultimate goal is to extend the network lifetime by providing sensors with high adaptability to the application-dependent and time-varying delay requirements. The TPC requests sensors to construct two types of links: direct and relay links. The direct links are used for control and forwarding time critical sensed data. On the other hand, the relay links are used only for data forwarding based on the user delay constraints, thus allowing the sensors to opportunistically use the most energy-saving links and forming a multi-hop path. Simulation results demonstrate that cluster-based delay-adaptive data gathering strategy (CD-DGS) saves a significant amount of energy for dense sensor networks by adapting to the user delay constraints.

Multi-hop Routing Protocol based on Neighbor Conditions in Multichannel Ad-hoc Cognitive Radio Networks (인지 무선 애드혹 네트워크에서의 주변 상황을 고려한 협력적 멀티홉 라우팅 방법)

  • Park, Goon-Woo;Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.369-379
    • /
    • 2011
  • During the routing process between nodes on the CR(Cognitive Radio) network conducting for efficient use of limited frequency resources, spectrum handover process due to the appearance of the PU occupies most of the routing latency, and also decreases the reliability of the path. In this paper, a cooperative routing protocol in a multi-channel environment is proposed. The source node broadcasts a message with available channel lists and probability of PU appearance during its route guidance. The intermediate nodes re-transmit the message, received from the source node, and update and maintain the information, status table of the path. The destination node determines the optimal path and sends a reply message to the selected path after it receives the messages from the intermediate nodes. The average probability of the PU appearance and the average time of the PU appearance are updated while transferring data. During data transmission the channel with the lowest probability of appearance of the PU is selected dynamically and if a PU appears on the current channel partial repairment is performed. It is examined that reliability of the selected path considerably is improved and the routing cost is reduced significantly compared to traditional routing methods.

Load Balancing of Unidirectional Dual-link CC-NUMA System Using Dynamic Routing Method (단방향 이중연결 CC-NUMA 시스템의 동적 부하 대응 경로 설정 기법)

  • Suh Hyo-Joon
    • The KIPS Transactions:PartA
    • /
    • v.12A no.6 s.96
    • /
    • pp.557-562
    • /
    • 2005
  • Throughput and latency of interconnection network are important factors of the performance of multiprocessor systems. The dual-link CC-NUMA architecture using point-to-point unidirectional link is one of the popular structures in high-end commercial systems. In terms of optimal path between nodes, several paths exist with the optimal hop count by its native multi-path structure. Furthermore, transaction latency between nodes is affected by congestion of links on the transaction path. Hence the transaction latency may get worse if the transactions make a hot spot on some links. In this paper, I propose a dynamic transaction routing algorithm that maintains the balanced link utilization with the optimal path length, and I compare the performance with the fixed path method on the dual-link CC-NUMA systems. By the proposed method, the link competition is alleviated by the real-time path selection, and consequently, dynamic transaction algorithm shows a better performance. The program-driven simulation results show $1{\~}10\%$ improved fluctuation of link utilization, $1{\~}3\%$ enhanced acquirement of link, and $1{\~}6\%$ improved system performance.