본 연구에서는 통행배정 모형이 갖는 여러 가지 가정 중 대칭적 통행비용 함수를 갖는 가정을 극복할 수 있는 방법에 대해 살펴보았다. 통행배정 문제에 있어서 대칭적 비용함수 가정이라는 것은 링크의 통행비용은 다른 링크의 교통량에 전혀 영향을 받지 않는 않으면서, 동시에 해당 링크를 통과하는 단하나의 수단에 의해서만 결정된다는 의미이다. 본 연구에서는 이러한 가정을 극복할 수 있는 비대칭 통행배정모형의 특성을 살펴보고, 그 해석 모형에 대해 고찰하였다. 이 때 대표적 비대칭 통행배정 문제인 다수단 통행배정 모형을 중심으로 문제를 정의하여 검토하였다. 대각화(Diagonalized) 알고리즘과 Column Generation에 기반한 heuristic 모형을 다수단 통행배정 모형에 적용하여 그 결과를 분석하였다. 그 과정을 통해 대각화 알고리즘은 초기해의 수단과 수렴기준 수단에 따라 서로다른 해를 갖는 복수의 평형해(Equilibria)특성을 가지고 있음을 확인하였다. 그에 비해 Column Generation에 기반한 heuristic 모형은 Euclidean Norm을 이용한 부분최적화를 통해 복수의 평형해(Equilibria)에 관한 문제점을 개선할 수 있었다.
This study is concerned with developing a heuristic algorithm for solving a class of ninlinear integer programs(NLIP). Exact algrithm for solving a NLIP either may not exist, or may take an unrealistically large amount of computing time. This study develops a new heuristic, the Excursion Algorithm(EA), for solving a class of NLIP's. It turns out that excursions over a bounded feasible and/or infeasible region is effective in alleviation the risks of being trapped at a lical optimum. The developed EA is applied to the redundancy optimization problems for improving the system safety, and is compared with other existing heuristic methods. We also include simulated annealing(SA) method in the comparision experiment due to ist populatrity for solving complex combinatorial problems. Computational results indicate that the proposed EA performs consistently better than the other in terms of solution quality, with moderate increase in computing time. Therefore, the proposed EA is believed to be an attractive alternative to other heuristic methods.
Recently, a shipyard is making every effort to efficiently manage equipments of resources such as a gantry crane, transporter, and so on. So far block lifting scheduling of a gantry crane has been manually performed by a manager of the shipyard, and thus it took much time to get scheduling results and moreover the quality of them was not optimal. To improve this, a block lifting scheduling system of the gantry crane using optimization techniques was developed in this study. First, a block lifting scheduling problem was mathematically formulated as a multi-objective optimization problem, considering the minimization of travel distance at an idle state and wire replacement during block lifting. Then, to solve the problem, a meta-heuristic optimization algorithm based on the genetic algorithm was proposed. To evaluate the efficiency and applicability of the developed system, it was applied to an actual block lifting scheduling problem of the shipyard. The result shows that blocks can be efficiently lifted by the gantry crane using the developed system, compared to manual scheduling by a manager.
The surface reconstruction problem from a set of wire-frame contours is very important in diverse fields such as medical imaging or computer animation. In this paper, surface triangulation method is proposed for solving the problem. Generally, many optimal triangulation techniques suffer from the large computation time but heuristic approaches may produce very unnatural surface when contours are widely different in shape. To compensate the disadvantages of these approaches, we propose a new heuristic triangulation method which iteratively decomposes the surface generation problem from a band (a pair of vertices chain) into tow subproblems from two sub-bands. Generally, conventional greedy heuristic contour triangulation algorithm, suffer from the drastic error propagation during surface modeling when the adjacent contours are different in shape. Our divide-and-conquer algorithm, called band partitioning algorithm, processes eccentric parts of the contours first with more global information. Consequently, the resulting facet model becomes more stable and natural even though the shapes are widely different. An interesting property of our method is hat it supports multi-resolution capability in surface modeling time. According to experiments, it is proved to be very robust and efficient in many applications.
The ant colony optimization (ACO) algorithm is a new heuristic algorithm that offers good robustness and searching ability. With in-depth exploration, the ACO algorithm exhibits slow convergence speed, and yields local optimization solutions. Based on analysis of the ACO algorithm and the genetic algorithm, we propose a novel hybrid genetic ant colony optimization (NHGAO) algorithm that integrates multi-population strategy, collaborative strategy, genetic strategy, and ant colony strategy, to avoid the premature phenomenon, dynamically balance the global search ability and local search ability, and accelerate the convergence speed. We select the traveling salesman problem to demonstrate the validity and feasibility of the NHGAO algorithm for solving complex optimization problems. The simulation experiment results show that the proposed NHGAO algorithm can obtain the global optimal solution, achieve self-adaptive control parameters, and avoid the phenomena of stagnation and prematurity.
This study is concerned with selecting mutually dependent quality improvement alternatives with resource constraints. These qualify improvement alternatives art different fro the tradition at alternatives which are independent from each other. In other words, selection of any improvement alternative requires other related specific improvement. Also the overall product quality in a multi stage manufacturing process is characterized by a complex multiplication method rather than a simple addition method which dose not allow to solve a linear knapsack problem despite its popularity in the traditional study. This study suggests a non-linear integer programming model for selecting mutually dependent quality improvement alternatives in multi-stage manufacturing process. In order to apply the model to selecting alternatives. This study also suggests a heuristic mode1 based on a dynamic programming model which is more practical than the non-linear integer programming model. The logic of the heuristic model enables 1) to estimate improvement effectiveness values on all improvement alternatives specifically defined for this study. 2) to arrange the effectiveness values in a descending order, and 3) to select the best one among the alternatives based on their forward and backward linkage relationships. This process repeats to selects other best alternatives within the resource constraints. This process is presented in a Computer programming in Appendix A. Alsc a numerical example of model application is presented in Chapter 4.
Under amazing increase in markets and certain demand on qualified service in the delivery system, global logistic optimization is becoming a keen interest to provide an essential infrastructure coping with modern competitive prospects. As a key technology for such deployment, we have been engaged in the practical studies on vehicle routing problem (VRP) in terms of Weber model, and developed a hybrid approach of meta-heuristic methods and the graph algorithm of minimum cost flow problem. This paper extends such idea to multi-depot VRP so that we can give a more general framework available for various real world applications including those in green or low carbon logistics. We show the developed procedure can handle various types of problem, i.e., delivery, direct pickup, and drop by pickup problems in a common framework. Numerical experiments have been carried out to validate the effectiveness of the proposed method. Moreover, to enhance usability of the method, Google Maps API is applied to retrieve real distance data and visualize the numerical result on the map.
This paper presents a novel symbiotic organisms search (SOS) algorithm to optimize both real power loss (RPL) and voltage stability limit (VSL) of a transmission network by controlling the variables such as unified power flow controller (UPFC) location, UPFC series injected voltage magnitude and phase angle and transformer taps simultaneously. Mathematically, this issue can be formulated as nonlinear equality and inequality constrained multi objective, multi variable optimization problem with a fitness function integrating both RPL and VSL. The symbiotic organisms search (SOS) algorithm is a nature inspired optimization method based on the biological interactions between the organisms in ecosystem. The advantage of SOS algorithm is that it requires a few control parameters compared to other meta-heuristic algorithms. The proposed SOS algorithm is applied for solving optimum control variables for both single objective and multi-objective optimization problems and tested on New England 39 bus test system. In the single objective optimization problem only RPL minimization is considered. The simulation results of the proposed algorithm have been compared with the results of the algorithms like interior point successive linear programming (IPSLP) and bacteria foraging algorithm (BFA) reported in the literature. The comparison results confirm the efficacy and superiority of the proposed method in optimizing both single and multi objective problems.
This paper is concerned with a development and evaluation of heuristic algorithms for the n-job, M-stage flowshop with sequence dependent setup times. Three heuristic algorithms, CAIDAN, DANNEN and PETROV, are proposed. The makespan is taken as a performance measure for the algorithms. The experiment for each algorithm is designed for a $4{\times}3{\times}3$ factorial design with 360 observations. The experimental factors are PS (ratio of processing times to setup times), M (number of machines), and N (number of jobs). The makespan of the proposed heuristic algorithms is compared with the optimal makespan obtained by the complete enumeration method. The result of comparision of performance measure is called a relative error. The mean relative errors of CAIDAN, DANNEN and PETROV algorithms are 4.488%. 6.712% and 7.282%, respectively. The computational results are analysed using SPSS. The experimental results show that the three factors are statistically signiticant at 5% level.
Significant improvements to methodologies on structural damage detection (SDD) have emerged in recent years. However, many methods are related to inversion computation which is prone to be ill-posed or ill-conditioning, leading to low-computing efficiency or inaccurate results. To explore a more accurate solution with satisfactory efficiency, a PSO-INM algorithm, combining particle swarm optimization (PSO) algorithm and an improved Nelder-Mead method (INM), is proposed to solve multi-sample objective function defined based on Bayesian inference in this study. The PSO-based algorithm, as a heuristic algorithm, is reliable to explore solution to SDD problem converted into a constrained optimization problem in mathematics. And the multi-sample objective function provides a stable pattern under different level of noise. Advantages of multi-sample objective function and its superior over traditional objective function are studied. Numerical simulation results of a two-storey frame structure show that the proposed method is sensitive to multi-damage cases. For further confirming accuracy of the proposed method, the ASCE 4-storey benchmark frame structure subjected to single and multiple damage cases is employed. Different kinds of modal identification methods are utilized to extract structural modal data from noise-contaminating acceleration responses. The illustrated results show that the proposed method is efficient to exact locations and extents of induced damages in structures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.