• Title/Summary/Keyword: Multi-heat-source

Search Result 97, Processing Time 0.033 seconds

A Thermal Model for Silicon-on-Insulator Multilayer Structure in Silicon Recrystallization Using Tungsten Lamp (텅스텐 램프를 이용한 실리콘 재결정시의 SOI 다층구조에 대한 열적모델)

  • 경종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.5
    • /
    • pp.90-99
    • /
    • 1984
  • A onetimensional distribution of the temperature and the heat source in the SOI (silicon-on-insulator) multi-layer structure illuminated by tungsten lamps from both sides was obtained by solving the heat equation in steady state on a finite difference grid using successive over-relaxation method. The heat source distribution was obtained by considering such features as spectral components of the light source, multiple reflection at the internal interfaces, temperature and frequency dependence of the light absorption coefficient, etc. The front and back surface temperatures, which are boundary conditions for the heat equation, were derived from a requirement that they satisfy the radiation conditions. The radiation flux as well as the conduction flux was considered in modelling the thermal behaviour at the internal interfaces. Since the temperature and the heat source profiles are strongly dependent upon each other, the calculation of each profile was iterated using the updated profile of the other until they are consistent with each other. The experimental temperature at the front surface of the wafer as measured by Pyrometer was about 1200$^{\circ}$K, while the simulated temperature was 1120$^{\circ}$K.

  • PDF

Winter Season Performance Characteristics of Raw Water-Source Heat Pump System with a Thermal Storage Tank (원수열원 히트펌프 축열시스템의 동절기 성능분석)

  • Cho, Yong;Lee, Dong Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.202-202
    • /
    • 2011
  • Performance of the raw water-source heat pump system with a thermal storage tank has been analyzed in winter season. The raw water is transferred through the multi-regional water supply system from Han river. Raw water is large temperature difference resource compared with groundwater. Although the raw water temperature drops to $0.6^{\circ}C$ due to the heavy snowfall and the severe cold in late January and early February, 2010, the system has been normally operated without any trouble this winter. The unit COP and system COP considered all pump power consumption were estimated based on the second-by-second data of the all sensors. The monthly averaged unit COP and system COP are 3.37 and 2.76 respectively with $1.4^{\circ}C$ of raw water in January, 3.55 and 2.89 with $1.6^{\circ}C$ raw water in February, 3.82 and 3.15 with $5.4^{\circ}C$ raw water in March. The performance of the system are increased with raw water temperature, and the COPs are higher than the water-to-air heat pump system using relatively high temperature raw water from Daecheong reservoir because the water-to-water system was operated on the full load condition and was stopped when the thermal storage tank was full of the high temperature water.

  • PDF

Verification Experiment of a Ground Source Multi-heat Pump at Cooling Mode (지열원 물대공기 멀티 히트펌프의 냉방 운전 특성에 관한 실증 연구)

  • Choi, Jong-Min;Kang, Shin-Hyung;Choi, Jae-Ho;Lim, Hyo-Jae;Moon, Je-Myung;Kwon, Young-Seok;Kwon, Hyung-Jin;Kim, Rock-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.297-304
    • /
    • 2009
  • The aim of this study is to investigate the cooling performance of ground source multi-heat pump systems with a vertical single U-tube GLHX(U-tube system) and a vertical double tube GLHX(double tube system), which were installed in a school building located in Cheonan. All systems were operated in a part load conditions for all day, and the maximum COP of the single U-tube system and the double tube system were 6.2 and 5.2 at cooling mode, respectively. The double tube GLHX designed by the GLHEPRO, commercial program, was estimated to have the same performance as the U-tube GLHX, because the inlet temperatures of each outdoor unit heat exchanger for the former was similar to the latter. However, it is needed to prove the long tenn performance. It is suggested that the new algorithms to control the flow rate of secondary fluid for GLHX according to load variation have to be developed in order to enhance the performance of the system.

Experimental Study on Performance of MEMS(Multi-Effect-Multi-Stage) Distiller for Solar Thermal Desalination (태양열 해수담수화를 위한 증발식 MEMS(Multi-Effect-Multi-Stage)담수기 성능 실험 연구)

  • Joo, Hong-Jin;Jeon, Yong-Han;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.91-98
    • /
    • 2013
  • In this study, we have carried out development and performance evaluation of optimized MEMS(Multi-Effect-Multi-Stage) fresh water generator with $7m^2/day$ for solar thermal desalination system. The developed MEMS was composed of high temperature part and low temperature part. This arrangement has the advantage of increasing the availability of solar thermal energy. The MEMS consists of 2 steam generators, 5 evaporators, and 1 condenser. Tubes of heat exchanger used for steam generators, evaporators and condenser were manufactured by corrugated tubes. The performance of the MEMS was tested through in-door experiments, using an electric heater as heat source. The experimental conditions for each parameters were $20^{\circ}C$ for sea water inlet temperature to condenser, $8.16m^2$ /hour sea water inlet volume flow rate, $70^{\circ}C$ for hot water inlet temperature to generator of high temperature part, 3.6 4.8, 6.0 $m^2/hour$ for hot water inlet volume flow rate. As a result, The developed MEMS was required about 85 kW heating source to produce $7m^2/day$ of fresh water. It was analyzed that the performance ratio of MEMS was about 2.6.

Thermal Environment Analysis of a Room in Accordance with Ventilation Condition with Multi-Heat Sources (다수의 열원을 가지는 공간에서의 환기 조건에 따른 열환경 해석)

  • Kim, Jae-Jung;Son, Young-Gap;Chang, Seog-Weon;Ryu, Dong-Su
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.199-204
    • /
    • 2000
  • This paper reports a thermal environmental analysis of a room in accommodated with multi-heat sources according to ventilation condition. Two case modification have been investigated to obtain the lower temperature distribution in the room. The temperature distribution of the original room were found about $25{\sim}35^{\circ}C$. As a result, the use of, three ventilating fans and two electric fans are useful for room ventilation respectively, and using two electric fan is more recommendable in side of economical efficiency.

  • PDF

Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature

  • Lata, Parveen;Kaur, Harpreet
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.213-221
    • /
    • 2021
  • The objective of this paper is to study the deformation in a homogeneous isotropic thermoelastic solid using modified couple stress theory subjected to ramp-type thermal source with two temperature. The advantage of this theory is the involvement of only one material length scale parameter which can determine the size effects. Laplace and Fourier transform technique is applied to obtain the solutions of the governing equations. The components of displacement, conductive temperature, stress components and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effect of two temperature is depicted graphically on the resulted quantities. Numerical results show that the proposed model can capture the size effects of microstructures.

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel Part II : Proposal of a method to use shell element model

  • Kim, Jae Woong;Jang, Beom Seon;Kang, Sung Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.245-256
    • /
    • 2014
  • I-core sandwich panel that has been used more widely is assembled using high power $CO_2$ laser welding. Kim et al. (2013) proposed a circular cone type heat source model for the T-joint laser welding between face plate and core. It can cover the negative defocus which is commonly adopted in T-joint laser welding to provide deeper penetration. In part I, a volumetric heat source model is proposed and it is verified thorough a comparison of melting zone on the cross section with experiment results. The proposed model can be used for heat transfer analysis and thermal elasto-plastic analysis to predict welding deformation that occurs during laser welding. In terms of computational time, since the thermal elasto-plastic analysis using 3D solid elements is quite time consuming, shell element model with multi-layers have been employed instead. However, the conventional layered approach is not appropriate for the application of heat load at T-Joint. This paper, Part II, suggests a new method to arrange different number of layers for face plate and core in order to impose heat load only to the face plate.

Analysis and modeling of thermal resistance of multi fin/finger FinFETs (멀티 핀/핑거 FinFET 트랜지스터의 열 저항 해석과 모델링)

  • Jang, MoonYong;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.39-48
    • /
    • 2016
  • In this paper, we propose thermal resistance compact model of FinFET structure that has hexagon shaped source/drain. The heating effect and thermal properties were increased by reduced size of the device, and thermal resistance is an important factor to analyze the effect and the properties. The heat source and each contact that is moved heat out were set up in transistor, and domain is divided by the heat source and the four parts of contacts : source, drain, gate, substrate. Each contact thermal resistance model is subdivided as a easily interpretable structure by analyzing the temperature and heat flow of the TCAD simulation results. The domains are modeled based on an integration or conformal mapping method through the structure parameters according to its structure. First modeled by analyzing the thermal resistance to a single fin, and applying the change in the parameter of the channel increases to improve the accuracy of the thermal resistance model of the multi-fin/ finger. The proposed thermal resistance model was compared to the thermal resistance by analyzing results of the 3D Technology CAD simulations, and the proposed total thermal resistance model has an error of 3 % less in single and multi-finl. The proposed thermal resistance model can predict the thermal resistance due to the increase of the fin / finger, and the circuit characteristics can be improved by calculating the self-heating effect and thermal characterization.

A Study on Power Management Strategy for Multi-Power Source Fuel Cell Hybrid Armored Vehicle (다중 동력 연료전지 하이브리드 장갑차량의 동력관리 전략에 관한 연구)

  • An Sang-Jun;Kim Tae-Jin;Lee Kyo Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.361-365
    • /
    • 2005
  • Since the fuel cell uses the hydrogen for its fuel. it has no emission and higher efficiency than an internal combustion engine. Also fuel cell is much quieter than engine generator and generates heat much less than engine generator. So it has advantage of Army's 'si lent watch' capability and the ability to operate undetected by the enemy. The fuel cell hybrid system combines a fuel cell power system with an ESS. The ESS (e.g., batteries or ultracapacitors) reduces the fuel cell's peak power and transient response requirements. It allows the fuel cell to operate more efficiently and recovery of vehicle energy during deceleration. The battery has high energy density, so it has the advantage regarding driving distance. However, it has a disadvantage considering dynamic characteristic because of low power density. One other hand. the ultracapacitor has higher power density, so it can handle sudden change or discharge of required power. Yet. it has lower energy density. so it will be bigger and heavier than the battery when it has the same energy. This paper proposes the power management strategy for multi-power source fuel cell hybrid system. which is applied with the merits of both battery and ultra capacitor by using both of them simultaneous.

  • PDF

Heat Insulation Characteristics of Multi Layer Materials for Greenhouse (시설원예용 조합형 다겹보온자재의 보온 특성)

  • Chung, Sung-Won;Kim, Dong-Keon;Lee, Suk-Gun;Nam, Sang-Heon;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.341-347
    • /
    • 2009
  • Experiments and computations were conducted to investigate the heat insulation characteristics of multi layer materials for cultivation greenhouse. In case of the experiments, measurements of temperature were carried out with a K-type thermocouples and data logger to research the heat transfer in the experimental module generated by the heat source. A thermal conductivity meter, QTM-500 based on modified transient hot wire method was used to measure the thermal conductivity of multi layer materials. The numerical analyses were performed by commercial code CFX-11 according to the variation of multi layer materials without air layer. The experimental results showed that the heat insulation of multi layer materials was higher than single layer materials by 50~90%. It was found that the effect of heat insulation was raised by the combination of multi layer materials.