Browse > Article
http://dx.doi.org/10.12989/scs.2021.38.2.213

Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature  

Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University)
Kaur, Harpreet (Department of Basic and Applied Sciences, Punjabi University)
Publication Information
Steel and Composite Structures / v.38, no.2, 2021 , pp. 213-221 More about this Journal
Abstract
The objective of this paper is to study the deformation in a homogeneous isotropic thermoelastic solid using modified couple stress theory subjected to ramp-type thermal source with two temperature. The advantage of this theory is the involvement of only one material length scale parameter which can determine the size effects. Laplace and Fourier transform technique is applied to obtain the solutions of the governing equations. The components of displacement, conductive temperature, stress components and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effect of two temperature is depicted graphically on the resulted quantities. Numerical results show that the proposed model can capture the size effects of microstructures.
Keywords
modified couple stress theory; two temperature; isotropic solid; ramp type heat; Laplace and Fourier transform; multi-dual-phase-lag heat;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mohammadimehr, M. and Mohandes, M. (2015), "The effect of modified couple stress theory on buckling and vibration analysis of functionally graded double-layer Boron Nitride piezoelectric plate based on CPT", J. Solid Mech., 7(3), 281-298.
2 Nateghi, A. and Salamat-talab, M. (2013), "Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory", Compos. Struct., 96, 97-110. https://doi.org/10.1016/j.compstruct.2012.08.048.   DOI
3 Othman, M.I.A., Atwa, S.Y., Jahangir, A. and Khan, A. (2013), "Generalized magneto-thermo-microstretch elastic solid under gravitational effect with energy dissipation", Multidiscipline Model. Mater. Struct., 9(2), 145-176. https://doi.org/10.1108/MMMS-01-2013-0005.   DOI
4 Press W.H., Teukolsky S.A., Vellerling W. T. and Flannery B.P. (1986), Numerical Recipe, Cambridge University Press.
5 Ghasemi, A.R. and Mohandes, M. (2016), "Size-dependent Bending of Geometrically Nonlinear of Micro-Laminated Composite Beam based on Modified Couple Stress Theory", Mech. Adv. Compos. Struct., 3, 53-62. https://dx.doi.org/10.22075/macs.2016.434.   DOI
6 Zhang, B., He, Y., Liu, D., Gan, Z. and Shen, L. (2013), "A nonclassical Mindlin plate finite element based on a modified couple stress theory", Eur. J. Mech.-A/Solids, 42, 63-80. https://doi.org/10.1016/j.euromechsol.2013.04.005.   DOI
7 Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solid. Struct., 48(18), 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002.   DOI
8 Hassan, M., Marin M., Ellahi, R. and Alamri, S.Z. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids", Heat Transfer Res., 49(18), 1837-1848. https://doi.org/10.1615/HeatTransRes.2018025569.   DOI
9 Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Comput. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X.   DOI
10 Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple Quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.   DOI
11 Lata, P. (2018a), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4), 439-451. https://doi.org/10.12989/scs.2018.27.4.439.   DOI
12 Lata, P. and Kaur, H. (2019), "Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory", Coupled Syst. Mech., 8(6), 501-522. https://doi.org/10.12989/csm.2019.8.6.501.   DOI
13 Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.   DOI
14 Thai, H.T. and Choi, D.H. (2013), "Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory", Compos. Struct., 95, 142-153. https://doi.org/10.1016/j.compstruct.2012.08.023.   DOI
15 Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermomechanical bending analysis of AFG ceramic metal plates resting on a two parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.   DOI
16 Vlase, S., Marin, M., Öchsner, A. and Scutaru, M.L(2019), "Motion equation for a flexible one- dimensional element used in dynamical analysis of a multibody system", Continuum Mech. Thermodynam., 31(3), 715-724.   DOI
17 Ke, L.L., Yang, J., Kitipornchai, S. and Bradford, M.A. (2012), "Bending, buckling and vibration of size-dependent functionally graded annular microplates", Compos. Struct., 94, 3250-3257. https://doi.org/10.1016/j.compstruct.2012.04.037.   DOI
18 Jouneghani, F.Z., Babamoradi, H., Dimitri, R. and Tornabene, F. (2020), "A modified couple stress elasticity for non-uniform composite laminated beams based on Ritz formulation", Molecules, 25(6), 1404. https://doi.org/10.3390/molecules25061404.   DOI
19 Kahrobaiyan, M.H., Asghari, M. and Ahmadian, M.T. (2014), "A Timoshenko Beam Element Based on the Modified Couple Stress Theory", Int. J. Mech. Sci., 79, 75-83. https://doi.org/10.1016/j.ijmecsci.2013.11.014.   DOI
20 Ke, L.L., Wang, Y.S. and Wang, Z.D. (2011), "Thermal effect on free vibration and buckling of size-dependent microbeams", Physica E: Low-dimensional Syst. Nanostruct., 43(7), 1387-1393. https://doi.org/10.1016/j.physe.2011.03.009.   DOI
21 Khorshidi, K. and Fallah, A. (2017), "Free Vibration Analysis of Size-Dependent, Functionally Graded, Rectangular Nano/Micro-plates based on Modified Nonlinear Couple Stress Shear Deformation Plate Theories", Mech. Adv. Compos. Struct., 4, 127-137. https://dx.doi.org/10.22075/macs.2017.1800.1094   DOI
22 Koiter, W.T. (1964), "Couple stresses in the theory of elasticity, I and II", Philos. T. Roy. Soc. London B, 67, 17-29.
23 Kumar, R. and Abbas, I.A. (2013), "Deformation due to thermal source in micropolar thermoelastic media with thermal and conductive temperatures", J. Comput. Theor. Nanosci., 10(9), 2241-2247.   DOI
24 Kumar, R. and Devi, S. (2019), "Resonance of Nanoscale Beam due to Various Sources in Modified Couple Stress Thermoelastic Diffusion with Phase Lags", Mech. Mechanical Eng., 23, 36-49. https://doi.org/10.2478/mme-2019-0006.   DOI
25 Ezzat, M. and AI-Bary, A. (2016), "Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature", Int. J. Appl. Electromagnet. Mech., 50(4), 549-567. https://doi.org/10.3233/JAE-150131.   DOI
26 Lata, P. and Kaur, H. (2019a), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381.https://doi.org/10.12989/gae.2019.19.5.369.   DOI
27 Ma, H., Gao, X.L. and Reddy, J. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56, 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007   DOI
28 Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A, Adda Bedia, E.A. and Mahmoud, S.R. (2017), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., https://doi.org/10.1177%2F1099636217727577   DOI
29 Chen, W. and Li, X. (2014), "A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model", Archive of Appl. Mech., 84(3), 323-341. https://doi.org/10.1007/s00419-013-0802-1   DOI
30 Cosserat, E. and Cosserat, F. (1909), Theory of Deformable Bodies, Paris, France, Hermann et Fils.
31 Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., 13(3), 385-410. http://dx.doi.org/10.12989/gae.2017.13.3.385.   DOI
32 Farokhi, H. and Ghayesh, M.H. (2015), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", Int. J. Mech. Sci., 90, 133-144. https://doi.org/10.1016/j.ijmecsci.2014.11.002.   DOI
33 Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013), "Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory", Int. J. Eng. Sci., 68, 11-23. https://doi.org/10.1016/j.ijengsci.2013.03.001.   DOI
34 Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019) "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.   DOI
35 Lata, P. (2018), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., 66(1), 113-124. http://dx.doi.org/10.12989/sem.2018.66.1.113.   DOI
36 Arif, S.M., Biwi, M. and Jahangir, A. (2018), "Solution of algebraic lyapunov equation on positive-definite hermitian matrices by using extended Hamiltonian algorithm", Comput. Mater. Continua, 54, 181-195. https://doi.org/10.3970/cmc.2018.054.181   DOI
37 Belbachir, N., Bourada, M., Draiche, K., Tounsi, A. Bourada, F., Bousahla, A.A. and Mahmoud, S.R. (2020) "Thermal flexure analysis of anti-symmetric cross ply laminated plates using a four variable refined theory", Smart Struct. Syst., 25(4), 409-422. http://dx.doi.org/10.12989/sss.2020.25.4.409.   DOI
38 Bhatti, M.M., Marin, M., Zeeshan, A., Ellahi, R. and Abdelsalam, S.I. (2020), "Swimming of Motile Gyrotactic Microorganisms and Nanoparticles in Blood Flow Through Anisotropically Tapered Arteries", Frontiers in Physics, 8, 1-12, Art. No. 95.   DOI
39 Bhatti, MM, Khalique, C.M., Beg, T.A., Beg, O.A. and Kadir, A. (2020), "Numerical study of slip and radiative effects on magnetic Fe3O4-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion", Modern Phys. Lett. B, 34(2), 2050026. https://doi.org/10.1142/S0217984920500268.   DOI
40 Marin, M. (1996), "Some basic theorems in elastostatics of micropolar materials with voids", J. Comput. Appl. Math., 70(1), 115-126.   DOI
41 Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlinear Analysis: RWA, 10(3), 1572-1578.   DOI
42 Marin, M. (1995), "On existence and uniqueness in thermoelasticity of micropolar bodies", Comptes rendus de l'Academie des sciences Paris, Serie II, B, 321(12), 375-480.
43 Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Tounsi, A. and Tounsi, A. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.   DOI
44 Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of Couple-Stress in Linear Elasticity", Archive for Rational Mechanics and Analysis, 11 (1), 415-448.https://doi.org/10.1007/BF00253946.   DOI
45 Abbas, I.A. and Youssef, H.M. (2013), "Two-temperature generalized thermoelasticity under ramp-type heating by finite element method", Meccanica, 48(2), 331-339. https://doi.org/10.1007/s11012-012-9604-8.   DOI
46 Abbas, I. and Marin, M. (2017), "Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating", Physica E-Low-Dimensional Syst. Nanostruct., 87, 254-260. https://doi.org/10.1016/j.physe.2016.10.048.   DOI
47 Abbas, I.A. (2006), "Natural frequencies of a poroelastic hollow cylinder", Acta Mechanica, 186(1-4), 229-237. https://doi.org/10.1007/s00707-006-0314-y.   DOI
48 Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2002), "A simple nth-order shear deformation for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.   DOI
49 Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103.   DOI
50 Abbas, I.A. and Youssef, H.M. (2012), "A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method", Int. J. Thermophysics, 33(7), 1302-1313. https://doi.org/10.1007/s10765-012-1272-3.   DOI
51 Abbas, I.A. and Zenkour, A.M. (2014), "Two-temperature generalized thermoelastic interaction in an infinite fiber-reinforced anisotropic plate containing a circular cavity with two relaxation times", J. Comput. Theor. Nanosci., 11(1), 1-7. https://doi.org/10.1166/jctn.2014.3309.   DOI
52 Abualnour, M., Chick, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019) "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.   DOI
53 Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22, 107-117.
54 Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A. Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4),311-325. https://doi.org/10.12989/cac.2020.25.4.311.   DOI
55 Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M. (2019) "Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel", Heat Transfer Res., 50(16), 1539-1560.   DOI
56 Saeed, T., Abbas, I.A. and Marin, M. (2020), "A GL Model on Thermo-Elastic Interaction in a Poroelastic Material Using Finite Element Method", Symmetry, 12(3), 488.   DOI
57 Simsek, M. and Reddy, J. (2013), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58. https://doi.org/10.1016/j.compstruct.2013.01.017.   DOI
58 Ajri, M., Fakhrabadi, M.M.S. and Rastgoo, A. (2018), "Analytic solution for nonlinear dynamic behavior of viscoelastic nano-plates modified by consistent couple stress theory", Latin Am. J. Solid. Struct., 15(9), e113. https://doi.org/10.1590/1679-78254918   DOI
59 Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020.   DOI
60 Sherief, H.H. and Saleh H. (2005), "A half-space problem in the theory of generalized thermoelastic diffusion", International J. Solid. Struct., 42, 4484-4493. https://doi.org/10.1016/0377-0427(84)90075-X.   DOI
61 Zenkour, A.M. (2019a), "Refined multi-phase-lags theory for photothermal waves of a gravitated semiconducting half-space", Compos. Struct., 212, 346-364. https://doi.org/10.1016/j.compstruct.2019.01.015.   DOI
62 Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM:MSGT electro-magnatoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.   DOI
63 Alzahrani F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. https://doi.org/10.12989/scs.2016.22.2.369.   DOI
64 Zenkour, A.M. (2019), "Effect of thermal activation and diffusion on a photothermal semiconducting half-space", J. Phys. Chem. Solids, 132, 56-67. https://doi.org/10.1016/j.jpcs.2019.04.011.   DOI