• Title/Summary/Keyword: Multi-function

Search Result 3,453, Processing Time 0.025 seconds

Small Multi-Function Oven Research and Development Via the FGI Survey (FGI조사를 통한 소형 복합오븐 개발 연구)

  • Kim, Young-Sic;Hong, Wan-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2566-2574
    • /
    • 2013
  • This study performed a focus group interview(14 people) on food-service staffs, dieticians, and housewives to develop a small multi-function oven for rice flour. The interviewees have experienced rice flour cooking and oven at home or food-service business. The interviewees have not used commercial ovens on a daily basis for several reasons, such as the absence of understanding rice flour, lack of various recipes with rice flour and inconvenience of the oven. This study suggests of design, user experience, functional characteristics, color and so on relating to a small multi-function oven to the customers.

Optimum Structural Design of D/H Tankers by using Pareto Optimal based Multi-objective function Method (Pareto 최적점 기반 다목적함수 기법에 의한 이중선각유조선의 최적 구조설계)

  • Na, Seung-Soo;Yum, Jae-Seon;Han, Sang-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.284-289
    • /
    • 2005
  • A structural design system is developed for the optimum design of double hull tankers based on the multi-objective function method. As a multi-objective function method, Pareto optimal based random search method is adopted to find the minimum structural weight and fabrication cost. The fabrication cost model is developed by considering the welding technique, welding poses and assembly stages to manage the fabrication man-hour and process. In this study, a new structural design is investigated due to the rapidly increased material cost. Several optimum structural designs on the basis of high material cost are carried out based on the Pareto optimal set obtained by the random search method. The design results are compared with existing ship, which is designed under low material cost.

Multi-objective Optimization of Vehicle Routing with Resource Repositioning (자원 재배치를 위한 차량 경로계획의 다목적 최적화)

  • Kang, Jae-Goo;Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.36-42
    • /
    • 2021
  • This paper deals with a vehicle routing problem with resource repositioning (VRPRR) which is a variation of well-known vehicle routing problem with pickup and delivery (VRPPD). VRPRR in which static repositioning of public bikes is a representative case, can be defined as a multi-objective optimization problem aiming at minimizing both transportation cost and the amount of unmet demand. To obtain Pareto sets for the problem, famous multi-objective optimization algorithms such as Strength Pareto Evolutionary Algorithm 2 (SPEA2) can be applied. In addition, a linear combination of two objective functions with weights can be exploited to generate Pareto sets. By varying weight values in the combined single objective function, a set of solutions is created. Experiments accomplished with a standard benchmark problem sets show that Variable Neighborhood Search (VNS) applied to solve a number of single objective function outperforms SPEA2. All generated solutions from SPEA2 are completely dominated by a set of VNS solutions. It seems that local optimization technique inherent in VNS makes it possible to generate near optimal solutions for the single objective function. Also, it shows that trade-off between the number of solutions in Pareto set and the computation time should be considered to obtain good solutions effectively in case of linearly combined single objective function.

A Control Strategy of Auto-Leveling Equipment of Multi-Function Radar for Vehicle based on Embedded System Modeling

  • Byeol Han;Yushin Chang;Sungyong Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.1-8
    • /
    • 2023
  • This paper presents the control strategy of Auto-leveling equipment (ALE) of Multi-function radar (MFR) for vehicle using Embedded System. MFR implements surveillance patrol missions such as surface-to-air missiles and fighters with constant rotation. ALE consists of 4 Auto-leveling modules (ALM) and retains the stability with maintaining level. The gradient of vehicle can be measured and controlled by embedded systems. This paper contributes for improvement the system design with the ALM 1 set modeling. The validity of the modeling is verified using MATLAB/Simulink.

A Study on the Secure Double Pipe Hash Function (안전한 이중 파이프 해쉬함수에 관한 연구)

  • Kim, Hie-Do
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.201-208
    • /
    • 2010
  • The classical iterated hash function is vulnerable to a multi-collision attack. Gauravaram et al. proposed 3C and 3C+ hash functions, in which an accumulation chain is added to usual Merkle-Damgard changing. Their goal is to design composition schemes resistant to generic attacks of Joux's type, but Joscak and Tuma have shown that 3C and 3C+ schemes are not better than Merkle-Damgard scheme in term of security against multi-collision attacks under some mild assumptions. In this dissertation, in order to increase security of 3C hash function, we proposed secure double pipe hash function which was effectively using XOR and XNOR operations per blocks of message. We seek to improve on the work of Lucks in a way. Proposed secure double pipe hash function takes resistance to multi-block collision, fixed point and pre-image attacks.

A Low Power GaAs MMIC Multi-Function Chip for an X-Band Active Phased Array Radar System (X-대역 능동 위상 배열 레이더시스템용 저전력 GaAs MMIC 다기능 칩)

  • Jeong, Jin-Cheol;Shin, Dong-Hwan;Ju, In-Kwon;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.504-514
    • /
    • 2014
  • An MMIC multi-function chip with a low DC power consumption for an X-band active phased array radar system has been designed and fabricated using a 0.5 ${\mu}m$ GaAs p-HEMT commercial process. The multi-function chip provides several functions: 6-bit phase shifting, 6-bit attenuation, transmit/receive switching, and signal amplification. The fabricated multi-function chip with a compact size of $16mm^2(4mm{\times}4mm)$ exhibits a gain of 10 dB and a P1dB of 14 dBm from 7 GHz to 11 GHz with a DC low power consumption of only 0.6 W. The RMS(Root Mean Square) errors for the 64 states of the 6-bit phase shift and attenuation were measured to $3^{\circ}$ and 0.6 dB, respectively over the frequency.

Automatic Calibration of Rainfall-runoff Model Using Multi-objective Function (다중목적함수를 이용한 강우-유출 모형의 자동보정)

  • Lee, Kil-Seong;Kim, Sang-Ug;Hong, Il-Pyo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.861-869
    • /
    • 2005
  • A rainfall-runoff model should be calibrated so that the model simulates the hydrological behavior of the basin as accurately as possible. In this study, to calibrate the five parameters of the SSARR model, a multi-objective function and the genetic algorithm were used. The solution of the multi-objective function will not, in general, be a single unique set of parameters but will consist of the so-called Pareto solution according to various trade-offs between the different objectives. The calibration strategy using multi-objective function could decrease calibrating time and effort. From the Pareto solution, a single solution could be selected to simulate a specific flow condition.

Fabrication of Analysis Tool for Performance Verification of Naval Multi Function Radar (함정용 다기능레이다 성능검증을 위한 분석도구 제작)

  • Choi, Hong-Jae;Park, Myung-Hoon;Riew, oo-Gon;Kwon, Sewoong;Lee, Ki-Won;Kang, Yeon-Duk;Yo, Seung-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.123-131
    • /
    • 2020
  • The system performance of naval multi function radar is affected by radar beam operation. Multi f function radar has to operate complicated beam better than search radar and tracking radar which have single operation. This paper describes fabricating analysis tool for the verification method for system performance of naval multi function radar. We composed the model that naval ship with MFR and radar which are detecting targets to verification the system performance. The targets are composed anti-aircraft and anti-ship. We integrate each model and make naval MFR simulator that applied resource management of track beam and search beam. We verify analysis tool by simulation in operating scenario after adjusting system parameter to analysis tool.

Prediction of Stream Flow on Probability Distributed Model using Multi-objective Function (다목적함수를 이용한 PDM 모형의 유량 분석)

  • Ahn, Sang-Eok;Lee, Hyo-Sang;Jeon, Min-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.93-102
    • /
    • 2009
  • A prediction of streamflow based on multi-objective function is presented to check the performance of Probability Distributed Model(PDM) in Miho stream basin, Chungcheongbuk-do, Korea. PDM is a lumped conceptual rainfall runoff model which has been widely used for flood prevention activities in UK Environmental Agency. The Monte Carlo Analysis Toolkit(MCAT) is a numerical analysis tools based on population sampling, which allows evaluation of performance, identifiability, regional sensitivity and etc. PDM is calibrated for five model parameters by using MCAT. The results show that the performance of model parameters(cmax and k(q)) indicates high identifiability and the others obtain equifinality. In addition, the multi-objective function is applied to PDM for seeking suitable model parameters. The solution of the multi-objective function consists of the Pareto solution accounting to various trade-offs between the different objective functions considering properties of hydrograph. The result indicated the performance of model and simulated hydrograph are acceptable in terms on Nash Sutcliffe Effciency*(=0.035), FSB(=0.161), and FDBH(=0.809) to calibration periods, validation periods as well.

Multi-objective Optimization of a Laidback Fan Shaped Film-Cooling Hole Using Evolutionary Algorithm

  • Lee, Ki-Don;Husain, Afzal;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.150-159
    • /
    • 2010
  • Laidback fan shaped film-cooling hole is formulated numerically and optimized with the help of three-dimensional numerical analysis, surrogate methods, and the multi-objective evolutionary algorithm. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by four geometric design variables, the injection angle of the hole, the lateral expansion angle of the diffuser, the forward expansion angle of the hole, and the ratio of the length to the diameter of the hole, to maximize the film-cooling effectiveness compromising with the aerodynamic loss. The objective function values are numerically evaluated through Reynolds- averaged Navier-Stokes analysis at the designs that are selected through the Latin hypercube sampling method. Using these numerical simulation results, the Response Surface Approximation model are constructed for each objective function and a hybrid multi-objective evolutionary algorithm is applied to obtain the Pareto optimal front. The clustered points from Pareto optimal front were evaluated by flow analysis. These designs give enhanced objective function values in comparison with the experimental designs.