• Title/Summary/Keyword: Multi-force

Search Result 1,173, Processing Time 0.025 seconds

A study on a multi-input time control of multi-joint manipulator using sliding mode (슬라이딩 모드를 이용한 다관절 매니퓰레이터의 다입력 실시간 제어에 관한 연구)

  • 이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.652-657
    • /
    • 1992
  • This paper presents to accomplish successfully a multi-input real time control by applying control hierarchy for sliding mode of multi-joint manipulators whose nonlinear terms are regarded as disturbances. We- could simplify the dynamic equations of a manipulator and servo system, which are composed of linear elements and nonlinear elements, by assuming that nonlinear terms, which are Inertia term, gravity force term, Coriolis force term and centrifugal force term, are external disturbance. By simplifying that equation, we could easily obtain a control input which satisfy sliding mode of multi-input system. We proposed a new control input algorithm in order to decrease chattering by changing control input according as effect of disturbance if a control response become within allowance error range. In this experiments, we used DSP(Digital Signal Processor) controller to suppress chattering by time delay of calculation and to carry out real time control.

  • PDF

Material Characteristics of Dental Implant System with In-Vitro Mastication Loading

  • Jeong, Tae-Gon;Jeong, Yong-Hun;Lee, Su-Won;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Gang, Gwan-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.72-72
    • /
    • 2018
  • A dynamic fatigue characteristic of dental implant system has been evaluated with applying single axial compressive shear loading based on the ISO 14801 standard. For the advanced dynamic fatigue test, multi-directional force and motion needed to be accompanied for more information of mechanical properties as based on mastication in oral environment. In this study, we have prepared loading and motion protocol for the multi-directional fatigue test of dental implant system with single (Apical/Occlusal; AO), and additional mastication motion (Lingual/Facial; LF, Mesial/Distal; MD). As following the prepared protocol (with modification of ISO 14801), fatigue test was conducted to verify the worst case results for the development of highly stabilized dental implant system. Mechanical testing was performed using an universal testing machine (MTS Bionix 858, MN, USA) for static compression and single directional loading fatigue, while the multi-directional loading was performed with joint simulator (ADL-Force 5, MA, USA) under load control. Basically, all mechanical test was performed according to the ISO 14801:2016 standard. Static compression test was performed to identify the maximum fracture force with loading speed of 1.0 mm/min. A dynamic fatigue test was performed with 40 % value of maximum fracture force and 5 Hz loading frequency. A single directional fatigue test was performed with only apical/occlusal (AO) force application, while multi directional fatigue tests were applied $2^{\circ}$ of facial/lingual (FL) or mesial/distal (MD) movement. Fatigue failure cycles were entirely different between applying single-directional loading and multi-directional loading. As a comparison of these loading factor, the failure cycle was around 5 times lower than single-directional loading while applied multi-directional loading. Also, the displacement change with accumulated multi-directional fatigue cycles was higher than that of single directional cycles.

  • PDF

Optimization Methods for Power Allocation and Interference Coordination Simultaneously with MIMO and Full Duplex for Multi-Robot Networks

  • Wang, Guisheng;Wang, Yequn;Dong, Shufu;Huang, Guoce;Sun, Qilu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.216-239
    • /
    • 2021
  • The present work addresses the challenging problem of coordinating power allocation with interference management in multi-robot networks by applying the promising expansion capabilities of multiple-input multiple-output (MIMO) and full duplex systems, which achieves it for maximizing the throughput of networks under the impacts of Doppler frequency shifts and external jamming. The proposed power allocation with interference coordination formulation accounts for three types of the interference, including cross-tier, co-tier, and mixed-tier interference signals with cluster head nodes operating in different full-duplex modes, and their signal-to-noise-ratios are respectively derived under the impacts of Doppler frequency shifts and external jamming. In addition, various optimization algorithms, including two centralized iterative optimization algorithms and three decentralized optimization algorithms, are applied for solving the complex and non-convex combinatorial optimization problem associated with the power allocation and interference coordination. Simulation results demonstrate that the overall network throughput increases gradually to some degree with increasing numbers of MIMO antennas. In addition, increasing the number of clusters to a certain extent increases the overall network throughput, although internal interference becomes a severe problem for further increases in the number of clusters. Accordingly, applications of multi-robot networks require that a balance should be preserved between robot deployment density and communication capacity.

A Study on Cutting Force during Multi Wire Sawing of Silicon Wafers for Solar Cells (태양전지용 실리콘 웨이퍼의 멀티 와이어 쏘잉 시 절삭저항력에 관한 연구)

  • Hwang, In-Hwan;Park, Sang-Hyun;An, Kuk-Jin;Kwun, Geon-Dae;Lee, Chan-Jong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.66-71
    • /
    • 2016
  • Reducing the wafer breakage rate and sawing thinner wafers will decrease the cost of solar cells. This study was carried out in order to identify ways to achieve this goal. In this study, the cutting force characteristics using an ingot tilting-type diamond multi wire-sawing machine were analyzed. The cutting force was analyzed while varying the tilting angles and wire speed. The obtained data were analyzed by classifying the tangential cutting force and the normal cutting force. In this cutting force experiment, the difference between the forces was confirmed; it was found that it rises with increasing the tilting angles and decreases when the wire speed elevates. The resulting value can be utilized as basic data for the determination of an ideal cutting recipe.

Evaluation of Face Stability of Tunnel with Steel Pipe-Reinforced Multi-step Grouting (강관다단 그라우팅으로 보강된 터널의 막장 안정성 평가)

  • 이인모;이재성;남석우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.273-280
    • /
    • 2003
  • Tunneling in difficult geological conditions is often inevitable especially in urban areas. Ground improvement and reinforcement techniques are often required to guarantee safe tunnel excavations and/or to prevent damage to adjacent structures. The steel pipe-reinforced multi-step grouting method has been recently applied to tunnel sites in Korea as an auxiliary technique. In this study, the face stability with steel pipe-reinforced multi-step grouting was evaluated by simultaneously considering two factors: one is the effective stress acting on the tunnel face calculated by limit theorem and limit equilibrium method; the other is the seepage force obtained by means of numerical analysis. The study revealed that the influence of the steel pipe-reinforced multi-step grouting on the support pressure in dry condition is not significant while there is relatively a large amount of reduction in seepage forces by adopting the technique in saturated condition. The effect of the anisotropy of permeability on the seepage force acting on the tunnel face was also estimated by conducting the coupled analysis. It was found that a higher horizontal permeability compared with the vertical one causes reduction in the seepage force acting on the tunnel face.

  • PDF

Turning of Plastic Mold Steel(STAVAX) using Whisker Reinforced Ceramic (단침보강 세라믹 공구를 이용한 플라스틱 금형강(STAVAX)의 선삭가공)

  • Bae, Myung-Il;Lee, Yi-Seon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.36-41
    • /
    • 2012
  • In this study, we turning plastic mold steel (STAVAX) against cutting speed, depth of cut, feed rate using whisker reinforced ceramic tool (WA1). To predict cutting force, analyze principal, radial, feed force with multi-regression analysis. Results are follows: From the analysis of variance, affected factor to cutting force feed rate, depth of cut, cutting speed in order and cutting speed was very small affect to cutting force. From multi-regression analysis, we extracted regression equation and the coefficient of determination$(R^2)$ was 0.9, 0.88, 0.856 at principal, radial and feed force. It means regression equation is significant. From the experimental verification, it was confirmed that principal, radial and feed force was predictable by regression equation.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

Multi-Point Contact Analysis of Two Bodies in Plane (평면에서의 임의 형상을 갖는 물체의 다점 접촉 해석)

  • Jeon, Gyeong-Jin;Park, Su-Jin;Son, Jeong-Hyeon;Yu, Wan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1631-1637
    • /
    • 2002
  • This paper presents a method for calculating contact force between bodies on plane. At each integration time step, the proposed method finds expected contact point on their outlines and then calculates penetration, velocity of penetration and contact force. This paper adopts continuous analysis method and multi-point contact method to calculate contact force. To obtain the accurate expected contact point on their outlines, a new algorithm is developed. The accuracy of the proposed algorithm is demonstrated by comparing the numerical results of the proposed method and DADS.

Sensing method of multi-component forces and moments using a column structure (기둥을 이용한 다축 힘/모멘트 감지 방법에 관한 연구)

  • Shin, H.H.;Kang, D.I.;Park, Y.K.;Kim, J.H.;Joo, J.W.;Kim, O.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.837-841
    • /
    • 2001
  • The column-type sensing element in building and mechanical construction parts was designed as three forces and three moments sensor by attaching strain gages approximately. Compared to conventional multi-component sensor, the designed sensor can solve the problem about low stiffness and high cost. The radius of the column was designed analytically and compared with finite element analysis. The coupling errors between components were minimized by using addition and subtraction procedure of signals. The fabricated sensor was tested by using a deadweight force standard machine and a six-component force calibration machine in Korea Research Institute of Standards and Science(KRISS). The calibration showed that the multi-component force/moment sensor had coupling error less than 19.8 % between $F_x$ and $M_y$ components, and 9.0 % in case of other components.

  • PDF

Analysis of Isolation System in Distinct Multi-mechanism HIF Device (이종 복합 메카니즘 HIF 기구의 충격저감시스템 해석)

  • Choe Eui Jung;Kim Hyo-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.53-59
    • /
    • 2005
  • In this study, the isolation system for multi-mechanism HIF (high impulsive force) device has been investigated. For this purpose, parameter optimization process has been performed based on the simplified isolation system model under constraints of moving displacement and transmitted force. The design parameters for multi-mechanism HIF device have been derived with respect to HIF system I and HIF system II, respectively. In order to implement the dynamic absorbing system, the dual stage hydro-pneumatic damper and magnetorheological damper with semi-active control scheme are considered. Finally, the performance of the designed prototype isolation system has been evaluated by experimental works under actual operating conditions.