• 제목/요약/키워드: Multi-dimensional data

검색결과 841건 처리시간 0.037초

DATA MININING APPROACH TO PARAMETRIC COST ESTIMATE IN EARLY DESIGN STAGE AND ANALYTICAL CHARACTERIZATION ON OLAP (ON-LINE ANALYTICAL PROCESSING)

  • JaeHo Cho;HyunKyun Jung;JaeYoul Chun
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.176-181
    • /
    • 2011
  • A role of cost modeler is that of facilitating design process by the systematic application of cost factors so as to maintain sensible and economic relationships between cost, quantity, utility and appearance. These relationships help to achieve the client's requirements within an agreed budget. The purpose of this study is to develop a parametric cost estimating model for the early design stage by using the multi-dimensional system of OLAP (On-line Analytical Processing) based on the case of quantity data related to architectural design features. The parametric cost estimating models have been adopted to support decision making in the early design stage. These models typically use a similar instance or a pattern of historical case. In order to effectively use this type of data model, it is required to set data classification and prediction methods. One of the methods is to find the similar class in line with attribute selection measure in the multi-dimensional data model. Therefore, this research is to analyze the relevance attribute influenced by architectural design features with the subject of case-based quantity data used for the parametric cost estimating model. The relevance attributes can be analyzed by Analytical Characterization. It helps determine what attributes to be included in the OLAP multi-dimension.

  • PDF

시계열 데이터베이스에서 DFT-기반 다차원 인덱스를 위한 물리적 데이터베이스 설계 (Physical Database Design for DFT-Based Multidimensional Indexes in Time-Series Databases)

  • 김상욱;김진호;한병일
    • 한국멀티미디어학회논문지
    • /
    • 제7권11호
    • /
    • pp.1505-1514
    • /
    • 2004
  • 시퀀스 매칭은 시계열 데이터베이스로부터 질의 시퀀스와 변화의 추세가 유사한 데이터 시퀀스들을 검색하는 연산이다. 기존의 대부분의 연구에서는 효과적인 시퀀스 매칭을 위하여 다차원 인덱스를 사용하며, 데이터 시퀀스를 이산 푸리에 변환(Discrete Fourier Transform: DFT)한 후, 단순히 앞의 두 개 내지 세 개의 DFT 계수만을 구성 속성 (organizing attributes)으로 사용함으로써 고차원의 경우 발생하는 차원 저주(dimensionality curse) 문제를 해결한다. 본 논문에서는 기존의 단순한 기법이 가지는 성능 상의 문제점들을 지적하고, 이러한 문제점들을 해결하는 최적의 다차원 인덱스 구성 기법을 제안한다. 제안된 기법은 대상이 되는 시계열 데이터베이스의 특성을 사전에 분석함으로써 변별력이 뛰어난 요소들을 다차원 인덱스의 구성 속성으로 선정하며, 비용 모델(cost model)을 기반으로 한 시퀀스 매칭 비용의 추정을 통하여 다차원 인덱스에 참여하는 최적의 구성 속성의 수를 결정한다. 제안된 기법의 우수성을 규명하기 위하여 실험을 통한기존 기법과의 성능 비교를 수행하였다 실험 결과에 의하면, 제안된 기법은 기존의 기법에 비교하여 매우 큰 성능 개선 효과를 가지는 것으로 나타났다.

  • PDF

CFD/RELAP5 coupling analysis of the ISP No. 43 boron dilution experiment

  • Ye, Linrong;Yu, Hao;Wang, Mingjun;Wang, Qianglong;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.97-109
    • /
    • 2022
  • Multi-dimensional coupling analysis is a research hot spot in nuclear reactor thermal hydraulic study and both the full-scale system transient response and local key three-dimensional thermal hydraulic phenomenon could be obtained simultaneously, which can achieve the balance between efficiency and accuracy in the numerical simulation of nuclear reactor. A one-dimensional to three-dimensional (1D-3D) coupling platform for the nuclear reactor multi-dimensional analysis is developed by XJTU-NuTheL (Nuclear Thermal-hydraulic Laboratory at Xi'an Jiaotong University) based on the CFD code Fluent and system code RELAP5 through the Dynamic Link Library (DLL) technology and Fluent user-defined functions (UDF). In this paper, the International Standard Problem (ISP) No. 43 is selected as the benchmark and the rapid boron dilution transient in the nuclear reactor is studied with the coupling code. The code validation is conducted first and the numerical simulation results show good agreement with the experimental data. The three-dimensional flow and temperature fields in the downcomer are analyzed in detail during the transient scenarios. The strong reverse flow is observed beneath the inlet cold leg, causing the de-borated water slug to mainly diffuse in the circumferential direction. The deviations between the experimental data and the transients predicted by the coupling code are also discussed.

홀로그래픽 데이터 저장장치에서 2차원 심볼 간 간섭을 완화하기 위한 4-레벨 균형 변조부호 (4-Level Balanced Modulation Code for the Mitigation of Two-Dimensional Intersymbol Interference in Holographic Data-Storage Systems)

  • 박근환;이재진
    • 전자공학회논문지
    • /
    • 제53권9호
    • /
    • pp.12-17
    • /
    • 2016
  • 홀로그래픽 데이터 저장 장치(HDSS)는 페이지 단위로 저장 매체의 체적에 데이터를 저장 및 판독하고 2차원으로 데이터를 처리하기 때문에 데이터 전송 속도 및 저장 용량이 증가한다. 게다가, 멀티레벨 HDSS는 한 픽셀에 한 비트이상을 저장할 수 있다. 하지만 2차원으로 페이지를 처리하므로 기존의 데이터 저장 시스템과 달리 2차원으로 인접한 심볼 간 간섭(ISI) 및 인접 페이지 간 간섭(IPI)가 발생한다. 기존에 발표된 논문들은 멀티레벨 HDSS 환경에서 2차원 ISI 완화에 관한 연구에 초점을 두었지만 멀티레벨 HDSS 환경에서 2차원 ISI와 IPI를 동시에 완화하는 연구는 진행되지 않았다. 본 논문에서는 2차원 ISI 및 IPI를 동시에 완화하는 4-레벨 균형 변조부호를 제안하였다.

계층적 모델에 의한 3차원 재구성 영상의 임의단면 표시 (Arbitrary Cross Sectional Display from Three-dimensional Reconstructed Image by Hierarchical Model)

  • 유선국;김선호
    • 대한의용생체공학회:의공학회지
    • /
    • 제10권2호
    • /
    • pp.157-164
    • /
    • 1989
  • Three-dimensional imaging and manipulation of CT data are becoming increasingly important for deterRing the complex structure and pathologies. Octree which is a hierarchical data model is used to reconstruct three- dimensional objects from CT scans. Orthogonal cross sections are displayed by traverse the octree partially. Arbitrary oblique planes are derived by intersecting the square region of plane and cubic volume of octal node. Thia method enables the display of multi-structured complex organ ann the realization by personal computer.

  • PDF

고자장 다차원 자기공명영상에서 신호대잡음비 분석 (Analysis of Signal-to-Noise Ratio in High Field Multi-dimensional Magnetic Resonance Imaging)

  • 안창범;김휴정;장경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2783-2785
    • /
    • 2003
  • In multi-dimensional magnetic resonance imaging, data is obtained in the spatial frequency domain. Since the signal variation in the spatial frequency domain is much larger than that in the spatial domain, analog-to-digital converts with wide conversion bits are required. In this paper, the quantization noise in magnetic resonance imaging is analyzed. The signal-to-quantization noise ratio(SQNR) in the reconstructed image is derived from the level of quantization in the data acquisition. Since the quantization noise is proportional to the signal amplitude, it becomes more dominant in high field imaging. Using the derived formula the SQNR for several MRI systems are evaluated, and it is shown that the quantization noise can be a limiting factor in high field imaging, especially in three dimensional imaging in magnetic resonance imaging.

  • PDF

다차원 스펙트럼 해석법을 이용한 자동차 공조시스템의 기여도분석 (Coherent Analysis of HVAC Using the Multi-Dimensional Spectral Analysis)

  • 황동건;오재응;이정윤;김성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.999-1004
    • /
    • 2004
  • In this study, we identify contribution of structure-borne-noise of vehicle HVAC system using Multi-Dimensional spectral analysis (MDSA) method. Firstly, to identify the applicability of MDSA method, the case of HVAC system was modeled with four input / single output system. The four inputs which is given vibration data is composed of blower, evaporator, heater and duct. The single output is noise data from driver's seat. When the blower motor is operating, we analyze the contributions of four input / single output. As a result of experiment, we identify efficiency of systems modeled with four input / single output through ordinary coherence function (OCF) and multiple coherence function (MCF).

  • PDF

Multivariate Procedure for Variable Selection and Classification of High Dimensional Heterogeneous Data

  • Mehmood, Tahir;Rasheed, Zahid
    • Communications for Statistical Applications and Methods
    • /
    • 제22권6호
    • /
    • pp.575-587
    • /
    • 2015
  • The development in data collection techniques results in high dimensional data sets, where discrimination is an important and commonly encountered problem that are crucial to resolve when high dimensional data is heterogeneous (non-common variance covariance structure for classes). An example of this is to classify microbial habitat preferences based on codon/bi-codon usage. Habitat preference is important to study for evolutionary genetic relationships and may help industry produce specific enzymes. Most classification procedures assume homogeneity (common variance covariance structure for all classes), which is not guaranteed in most high dimensional data sets. We have introduced regularized elimination in partial least square coupled with QDA (rePLS-QDA) for the parsimonious variable selection and classification of high dimensional heterogeneous data sets based on recently introduced regularized elimination for variable selection in partial least square (rePLS) and heterogeneous classification procedure quadratic discriminant analysis (QDA). A comparison of proposed and existing methods is conducted over the simulated data set; in addition, the proposed procedure is implemented to classify microbial habitat preferences by their codon/bi-codon usage. Five bacterial habitats (Aquatic, Host Associated, Multiple, Specialized and Terrestrial) are modeled. The classification accuracy of each habitat is satisfactory and ranges from 89.1% to 100% on test data. Interesting codon/bi-codons usage, their mutual interactions influential for respective habitat preference are identified. The proposed method also produced results that concurred with known biological characteristics that will help researchers better understand divergence of species.

인체 유래 환경유해물질 노출에 따른 멀티 오믹스 데이터 통합 분석 가시화 시스템 (Visualization for Integrated Analysis of Multi-Omics Data by Harmful Substances Exposed to Human)

  • 신가희;홍지만;박서우;강병철;이봉문
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.363-373
    • /
    • 2022
  • Multi-omics data is difficult to interpret due to the heterogeneity of information by the volume of data, the complexity of characteristics of each data, and the diversity of omics platforms. There is not yet a system for interpreting to visualize research data on environmental diseases concerning environmental harmful substances. We provide MEE, a web-based visualization tool, to comprehensively explore the complexity of data due to the interconnected characteristics of high-dimensional data sets according to exposure to various environmental harmful substances. MEE visualizes omics data of correlation between omics data, subjects and samples by keyword searches of meta data, multi-omics data, and harmful substances. MEE has been demonstrated the versatility by two examples. We confirmed the correlation between smoking and asthma with RNA-seq and Methylation-Chip data, it was visualized that genes (P HACTR3, PXDN, QZMB, SOCS3 etc.) significantly related to autoimmune or inflammatory diseases. To visualize the correlation between atopic dermatitis and heavy metals, we selected 32 genes related immune response by integrated analysis of multi-omics data. However, it did not show a significant correlation between mercury in blood and atopic dermatitis. In the future, should continuously collect an appropriate level of multi-omics data in MEE system, will obtain data to analyze environmental substances and diseases.

A Multi-Dimensional Radio Resource Scheduling Scheme for MIMO-OFDM Wireless Systems

  • Li, Lei;Niu, Zhisheng
    • Journal of Communications and Networks
    • /
    • 제8권4호
    • /
    • pp.401-409
    • /
    • 2006
  • Orthogonal frequency division multiplexing (OFDM) and multiple input multiple output (MIMO) technologies provide additional dimensions of freedom with spectral and spatial resources for radio resource management. Multi-dimensional radio resource management has recently been identified to exploit the full dimensions of freedom for more flexible and efficient utilization of scarce radio spectrum while provide diverse quality of service (QoS) guarantees. In this work, a multi-dimensional radio resource scheduling scheme is proposed to achieve above goals in hybrid orthogonal frequency division multiple access (OFDMA) and space division multiple access (SDMA) systems. Cochannel interference (CCI) introduced by frequency reuse under SDMA is eliminated by frequency division and time division between highly interfered users. This scheme maximizes system throughput subjected to the minimum data rate guarantee. for heterogeneous users and transmit power constraint. By numerical examples, system throughput and fairness superiority of the our scheduling scheme are verified.