• Title/Summary/Keyword: Multi-coating

Search Result 289, Processing Time 0.04 seconds

Analysis of a Parallel-Two-Wire Transmission Line Coated with Multi-layer Dielectric Material (유전체가 다층으로 코팅된 평행 2선식 전송선로 해석)

  • Chun Dong-Wan;Kim Won-Ki;Shin Chull-Chai
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.131-137
    • /
    • 2004
  • In this paper, we proposed the method of the characteristic impedance and effective dielectric constant calculations of a parallel-two-wire transmission line coated with multi-layer dielectric material using conformal mapping method. First of all, we calculated the capacitance of the transmission line when coated by N layer dielectric material which has different thickness and dielectric constant and calculated the characteristic impedance and effective dielectric constant using calculated capacitances. When compared with the Maxwell 2D (made by Ansoft Corporation) simulation result calculated result was very similar to the simulation result within the four percent error range.

Analysis of Properties Multi-Layered TiN/CrN Thin Films Deposited by AIP Method (AIP법으로 증착된 TiN/CrN 다층박막의 특성 분석)

  • Baek, Min-Sook;Yoon, Dong-Joo;Heo, Ki-Bok;Kim, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.405-410
    • /
    • 2018
  • TiN and CrN thin films are among the most used coatings in machine and tool steels. TiN and CrN are deposited by arc ion plating(AIP) method. The AIP method inhibits the reaction by depositing a hard, protective coating on the material surface. In this study, the characteristics of multi-layer(TiN/CrN/TiN(TCT), CrN/TiN/CrN(CTC)) are investigated. For comparison, TiN with the same thickness as the multilayer is formed as a single layer and analyzed. Thin films formed as multilayers are well stacked. The characteristics of micro hardness and corrosion resistance are better than those of single layer TiN. The TiN/CrN peak is confirmed because both TCT and CTC are formed of the same component(TiN, CrN), and the phase is first grown in the (111) direction, which is the growth direction. However, the adhesion and abrasion resistance of the multilayer films are somewhat lower.

Surface Analysis and Conversion Efficiency of Multi-crystalline Silicon Solar Cell by Wet Chemical Etching (습식 화학 식각에 의한 다결정 실리콘 웨이퍼의 표면 분석 및 효율 변화)

  • Park, Seok-Gi;Do, Kyeom-Seon;Song, Hee-Eun;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.111-115
    • /
    • 2011
  • Surface Texturing is an essential process for high efficiency in multi-crystalline silicon solar cell. In order to reduce the reflectivity, there are two major methods; proper surface texturing and anti-reflection coating. For texturization, wet chemical etching is a typical method for multi-crystalline silicon. The chemical solution for wet etching consists of HF, $NHO_3$, DI and $CH_3COOH$. We carried out texturization by the change of etching time like 15sec, 30sec, 45sec, 60sec and measured the reflectivity of textured wafers. As making the silicon solar cells, we obtained the conversion efficiency and relationship between texturing condition and solar cell characteristics. The reflectivity from 300nm to 1200nm was the lowest with 15 sec texturing time and 60 sec texturing time showed almost same reflectivity as bare one. The 45 sec texturing time showed the highest conversion efficiency.

  • PDF

Synthesis of transparent conductive film containing solution -deposited poly (3, 4-ethylenedioxythiophene) (PEDOT) and water soluble multi-walled carbon nanotubes

  • Tung, Tran Thanh;Kim, Won-Jung;Kim, Tae-Young;Lee, Bong-Seok;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.205-206
    • /
    • 2008
  • The transparent conductive film was prepared by bar coating method of poly (3, 4-ethylenedioxythiophene) (PEDOT) and poly (sodium 4-stylenesulfonate) grafted multi-walled carbon nanotubes (MWNT-PSS) nanocomposites solution on the polyethylene terephthalate (PET) film. In this case, multi-wall carbon nanotubes was treated by chemical methods to obtain water soluble MWNT-PSS and then blending with PEDOT. The non-covalent bonding of polymer to the MWNT surface was confirmed by Fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA) and Transmission electro microscope (TEM) investigation also showed a polymer-wrapped MWNT structure. Furthermore, the electrical, transmission properties of the transparent conductive film were investigated and compared with control samples are raw PEDOT films.

  • PDF

Strain-Sensing Characteristics of Multi-Walled Carbon Nanotube Sheet

  • Jung, Daewoong;Lee, Gil S.
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.315-320
    • /
    • 2013
  • In this paper, the properties of strain sensors made of spin-capable multi-walled carbon nanotubes (MWCNTs) were characterized and their sensing mechanisms analyzed. The key contribution of this paper is a new fabrication technique that introduces a simpler transfer method compared to spin-coating or dispersion CNT. Resistance of the MWCNT sheet strain sensor increased linearly with higher strain. To investigate the effect of CNT concentration on sensitivity, two strain sensors with different layer numbers of MWCNT sheets (one and three layers) were fabricated. According to the results, the sensor with a three-layer sheet showed higher sensitivity than that with one layer. In addition, experiments were conducted to examine the effects of environmental factors, temperature, and gas on sensor sensitivity. An increase in temperature resulted in a reduction in sensor sensitivity. It was also observed that ambient gas influenced the properties of the MWCNT sheet due to charge transfer. Experimental results showed that there was a linear change in resistance in response to strain, and the resistance of the sensor fully recovered to its unstressed state and exhibited stable electromechanical properties.

Properties and Curing Behaviors of UV Curable Adhesives with Different Coating Thickness in Temporary Bonding and Debonding Process (Temporary Bonding and Debonding 공정용 UV 경화형 접착 소재의 코팅 두께에 따른 물성 및 경화거동)

  • Lee, Seung-Woo;Lee, Tae-Hyung;Park, Ji-Won;Park, Cho-Hee;Kim, Hyun-Joong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.873-879
    • /
    • 2014
  • UV curable adhesives with different acrylic functionalities were synthesized for temporary bonding and debonding process in 3D multi-chip packaging process. The aim is to study various factors which have an influence on UV curing. The properties and curing behaviors were investigated by gel fraction, peel strength, probe tack, and shear adhesion failure temperature. The results show that the properties and curing behaviors are dependent on not only acrylic functionalities of binders but also UV doses and coating thickness.

Field-emission properties of carbon nanotubes coated by zinc oxide films (산화아연막이 증착된 탄소 나노튜브의 전계방출 특성)

  • Kim, Jong-Pil;Noh, Young-Rok;Lee, Sang-Yeol;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1270_1271
    • /
    • 2009
  • In this research, gallium-incorporated zinc oxide (ZnO:Ga) thin films have been used as a coating material for enhancing the field-emission property of CNT-emitters. Multi-walled CNTs were directly grown on conical-type ($250{\mu}m$ in diameter) metal-tip substrates at $700^{\circ}C$ by inductively coupled plasma-chemical vapor deposition (ICP-CVD). The pulsed laser deposition (PLD) technique was used to produce 5wt% gallium-doped ZnO (5GZO) films with very low stress. The structural properties of ZnO and 5GZO coated CNTs were characterized by Raman spectroscopy. Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) were also used to monitor the variation in the morphology and microstructure of CNTs before and after 5GZO-coating. The measurement of the field emission characteristics showed that the emitter that coated the 5GZO (10nm) on CNTs exhibited the best performance: a maximum emission current of $325{\mu}A$, a threshold field of 2.2 V/${\mu}m$.

  • PDF

수성 고분자 - 탄소나노튜브 복합 분산 용액을 이용한 전계 방출 소자의 제작

  • Jeong, Hyeok;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.66.2-66.2
    • /
    • 2011
  • A polymer-based multi-walled carbon nanotube (MWCNT) field emission device was fabricated from a composite dispersion of MWCNTs and waterborne polymethyl methacrylate (PMMA). The waterborne PMMA synthesized through the emulsion polymerization method was added to minimize the reagglomeration of dispersed MWCNTs with surfactants in water, and increase the adhesion between the and the substrate. The field emission properties of the fabricated device were optimized by adjusting the density of the emitter and the adhesion between the MWCNTs and the substrate. These were done by controlling the polymer concentration added to the MWCNT dispersion, as well as the amount of spray coating on the substrate. The results confirm the successful fabrication of a polymer-based MWCNT field emission device with a low field of 1.07 $V/{\mu}m$ and a good electric field enhancement factor of 2445. The device was fabricated by adding 0.8 mg/mL of polymer solution to the MWCNT dispersion and applying 20 cycles of spray coating. Application of this same MWCNT/polymer composite solution to a flexible polymer substrate also resulted in the successful fabrication of an electric field emission device with uniform emission and long time stability.

  • PDF

Cost-down Antireflection Coating using Anodization for Multicrystalline Silicon Solar Cells (양극산화과정으로 형성된 저가 고효율 다결정 실리콘 태양전지 반사 방지막에 대한 연구)

  • Kwon, J.H.;Kim, D.S.;Lee, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.977-980
    • /
    • 2004
  • 본 논문에서는 저가 고효율 태양전지를 제작하기 위하여 p형 다결정 실리콘 기판을 사용하여 수산화 칼륨(KOH)이 포함된 용액에 Saw damage 과정 후 불산이 함유된 용액에 전기화학적 양극산화 과정으로 실리콘 웨이퍼 표면에 요철을 형성하여 다공성 실리콘을 형성 하였다. 본 논문은 전기화학적 에칭방법으로 기존의 진공장비로 제작된 반사방지막의 반사율만큼 감소된 다공성 실리콘 반사방지막을 형성하였다. 전자빔 증착기(e-beam evaporator)로 단층으로 형성된 $TiO_2$의 반사방지막은 400-1000 nm의 파장 범위에서 4.1 %의 평균 반사율을 가졌으며, 양극산화과정으로 형성된 다공성 실리콘은 400-1000 nm의 파장의 범위에서 4.4 %의 평균 반사율을 가졌다. 본 연구는 태양전지의 반사방지막 형성을 기존의 제작 방법보다 간단하고 저렴한 방법으로 접근하여 태양전지의 변환효율을 상승하는데 목적을 두었다.

  • PDF

Encapsulation Method of OLED with Inorganic Multi-layered Thin Films Sealed with Flat Glass (평판 유리로 봉인된 다층 무기 박막을 갖는 OLED 봉지 방법)

  • Park, Min-Kyung;Ju, Sung-Hoo;Yang, Jae-Woong;Paek, Kyeong-Kap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.905-910
    • /
    • 2011
  • To study encapsulation method for large-area organic light emitting diodes (OLEDs), red emitting OLEDs were fabricated, on which LiF and Al were deposited as inorganic protective films. And then the OLED was attached to flat glass by printing method using epoxy. In case of direct coating of epoxy onto OLED by printing method, luminance and current efficiency were remarkably decreased because of the damage to the OLED by epoxy. In case of depositing LiF and Al as inorganic protective films and then coating of epoxy onto OLED, luminance and current efficiency were not changed. OLED lifetime was more increased through inorganic protective films between OLED and flat glass than that without any encapsulation (8.8 h), i.e., 47 (LiF/Al/epoxy/glass), 62 (LiF/Al/LiF/epoxy/glass), and 84 h (LiF/Al/Al/epoxy/glass). The characteristics of OLED encapsulated with inorganic protective films (attached to flat glass) showed the possibility of application of protective films.