• Title/Summary/Keyword: Multi-chip packaging

Search Result 50, Processing Time 0.03 seconds

CSP + HDI : MCM!

  • Bauer, Charles-E.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.35-40
    • /
    • 2000
  • MCM technology languished troughout most of the 1990's due to high costs resulting from low yields and issues with known god die. During the last five years of the decade new developments in chip scale packages and high density, build up multi-layer printed wiring boards created new opportunities to design and produce ultra miniaturized modules using conventional surface mount manufacturing capabilities. Focus on the miniaturization of substrate based packages such as ball grid arrays (BGAs) resulted in chip scale packages (CSPs) offering many of the benefits of flip chip along with the handling, testing, manufacturing and reliability capabilities of packaged deviced. New developments in the PWB industry sought to reduce the size, weight, thickness and cost of high density interconnect (HDI) substrates. Shrinking geometries of vias and new constructions significantly increased the interconnect density available for MCM-L applications. This paper describes the most promising CSP and HDI technologies for portable products, high performance computing and dense multi-chip modules.

  • PDF

The Study and characteristics of integrated CMOS sensor's packaging (집적화된 CMOS 센서의 팩키징 연구 및 특성 평가)

  • Roh, Ji-Hyoung;Kwon, Hyeok-Bin;Shin, Kyu-Sik;Cho, Nam-Kyu;Moon, Byung-Moo;Lee, Dae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1551_1552
    • /
    • 2009
  • In this paper, we presented the packaging technologies of CMOS ISFET(Ion Sensitive Field Effect Transistor) pH sensor using post-CMOS process and MCP(Multi Chip Packaging). We have proposed and developed two types of packaging technology. one is one chip, which sensing layer is deposited on the gate metal of standard CMOS ISFET, the other is two chip type, which sensing layer is separated from CMOS ISFET and connected by bonding wire. These proposed packaging technologies would make it easy to fabricate CMOS ISFET pH sensor and to make variety types of pH sensor.

  • PDF

Ultra-precision Singulation of Micro BGA using Multi Blade (멀티블레이드를 이용한 Micro BGA의 초정밀 싱귤레이션)

  • 김성철;이은상;이해동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.861-864
    • /
    • 1997
  • Singulation is a process that cutting for separating a chip individually after finishing packaging process(micro BGA etc.). For shortening the process of singulation, we proposed the singulation using multi-blade. This paper introduced a method of multi-blade singulation and investigated a result of application and problems. The efficiency of singulation process was improved five times better than the single-blade by the singulation using Multi-blade.

  • PDF

The development of Pick and place system for multi-sorting of CSP (CSP의 Multi-sorting을 위한 pick and place 시스템의 개발)

  • 김찬용;곽철훈;이은상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.171-174
    • /
    • 1997
  • The great development of semiconductor industry demands the high efficiency and performance of related device, but the pick and place system of semiconductor packaging device can load a few units until nowdays. Although the system can load a lot of units, it can work multiple sort operation. The defect like that causes a low efficiency. Therefore, this paper represents the development of pick and place system which can work multiple sort operation.

  • PDF

Study on the structure of buried type capacitor for MCM (Multi-Chip-Module) (MCM-C(Multi-Chip-Module)용 내장형 캐패시터의 구조적 특성에 관한 연구)

  • Yoo, C. S.;Lee, W. S.;Cho, H. M.;Lim, W.;Kwak, S. B.;Kang, N. K.;Park, J. C.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.49-53
    • /
    • 1999
  • In this study, the characteristics of the structure of buried type capacitor for RF multi- chip-module are investigated. We developed many kinds of structures to minimize the space of capacitor in module and the value of parastic series inductance without any loss in capacitance, and in this procedure the effect of vias especially position, size, number length are analyzed and optimized. This characteristics of structures are checked through HFSS(high frequency structure simulator) of HP, and the value of parastic series inductance is calculated by equivalent circuit analysis. And ensuing the result of simulation, we made buried type capacitors using LTCC (low temperature cofired ceramic) material. In measurement of this sample, we found out the effective and precise method can be applied to buried type and characteristics of vias and striplines added for measuring are quantified.

  • PDF

Research about Design Techniques of A Fire Control System Main Control Board for Individual Combat Weapons using a Small and Low power Processor (소형.저 전력 프로세서를 이용한 소화기 사격통제장치 주제어보드 설계기법 연구)

  • Kwak, Ki-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.2 s.21
    • /
    • pp.30-37
    • /
    • 2005
  • In this paper, we propose how to design a fire control system main control board for individual combat weapons using a small and low power processor. To design an electric board of small weapon systems, Size and power consumption are very important factors. We solved the problem using selection of an adaptive processor, introduction of MicroChipPackaging method, and separate design of a main board Also we applied these methods to make the fire control system for small arms.

Microfabrication of Microwave Transceivers for On-Chip Near-Field Electromagnetic Shielding Characterization of Electroplated Copper Layers (극소형 전자기파 송수신기의 제작 및 전기도금된 구리박막의 칩단위 근접 전자기장 차폐효과 분석)

  • Gang, Tae-Gu;Jo, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.959-964
    • /
    • 2001
  • An experimental investigation on the near-field electromagnetic loss of thin copper layers has been presented using microfabricated microwave transceivers for applications to multi-chip microsystems. Copper layers in the thickness range of 0.2$\mu$m∼200$\mu$m have been electroplated on the Pyrex glass substrates. Microwave transceivers have been fabricated using the 3.5mm$\times$3.5mm nickel microloop antennas, electroformed on the silicon substrates. Electromagnetic radiation loss of the copper layers placed between the microloop transceivers has been measured as 10dB∼40dB for the wave frequency range of 100MHz∼1GHz. The 0.2$\mu$m-thick copper layer provides a shield loss of 20dB at the frequencies higher than 300MHz, whereas showing a predominant decreases of shield loss to 10dB at lower frequencies. No substantial increase of the shield effectiveness has been found for the copper shield layers thicker that 2 $\mu$m.

Copper Interconnection and Flip Chip Packaging Laboratory Activity for Microelectronics Manufacturing Engineers

  • Moon, Dae-Ho;Ha, Tae-Min;Kim, Boom-Soo;Han, Seung-Soo;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.431-432
    • /
    • 2012
  • In the era of 20 nm scaled semiconductor volume manufacturing, Microelectronics Manufacturing Engineering Education is presented in this paper. The purpose of microelectronic engineering education is to educate engineers to work in the semiconductor industry; it is therefore should be considered even before than technology development. Three Microelectronics Manufacturing Engineering related courses are introduced, and how undergraduate students acquired hands-on experience on Microelectronics fabrication and manufacturing. Conventionally employed wire bonding was recognized as not only an additional parasitic source in high-frequency mobile applications due to the increased inductance caused from the wiring loop, but also a huddle for minimizing IC packaging footprint. To alleviate the concerns, chip bumping technologies such as flip chip bumping and pillar bumping have been suggested as promising chip assembly methods to provide high-density interconnects and lower signal propagation delay [1,2]. Aluminum as metal interconnecting material over the decades in integrated circuits (ICs) manufacturing has been rapidly replaced with copper in majority IC products. A single copper metal layer with various test patterns of lines and vias and $400{\mu}m$ by $400{\mu}m$ interconnected pads are formed. Mask M1 allows metal interconnection patterns on 4" wafers with AZ1512 positive tone photoresist, and Cu/TiN/Ti layers are wet etched in two steps. We employed WPR, a thick patternable negative photoresist, manufactured by JSR Corp., which is specifically developed as dielectric material for multi- chip packaging (MCP) and package-on-package (PoP). Spin-coating at 1,000 rpm, i-line UV exposure, and 1 hour curing at $110^{\circ}C$ allows about $25{\mu}m$ thick passivation layer before performing wafer level soldering. Conventional Si3N4 passivation between Cu and WPR layer using plasma CVD can be an optional. To practice the board level flip chip assembly, individual students draw their own fan-outs of 40 rectangle pads using Eagle CAD, a free PCB artwork EDA. Individuals then transfer the test circuitry on a blank CCFL board followed by Cu etching and solder mask processes. Negative dry film resist (DFR), Accimage$^{(R)}$, manufactured by Kolon Industries, Inc., was used for solder resist for ball grid array (BGA). We demonstrated how Microelectronics Manufacturing Engineering education has been performed by presenting brief intermediate by-product from undergraduate and graduate students. Microelectronics Manufacturing Engineering, once again, is to educating engineers to actively work in the area of semiconductor manufacturing. Through one semester senior level hands-on laboratory course, participating students will have clearer understanding on microelectronics manufacturing and realized the importance of manufacturing yield in practice.

  • PDF