• Title/Summary/Keyword: Multi-chip Module

Search Result 74, Processing Time 0.025 seconds

A Study on the Convective Heat Transfer in Micro Heat Exchanger Embedded in Stacked Multi-Chip Modules (적층형 Multi-Chip Module(MCM) 내부에 삽입된 초소형 열교환기 내에서의 대류 열전달 현상에 대한 연구)

  • Shin, Joong-Han;Kang, Moon-Koo;Lee, Woo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.774-782
    • /
    • 2004
  • This article presents a numerical and experimental investigation for the single-phase forced laminar convective heat transfer through arrays of micro-channels in micro heat exchangers to be used for cooling power-intensive semiconductor packages, especially the stacked multi-chip modules. In the numerical analysis, a parametric study was carried out for the parameters affecting the efficiency of heat transfer in the flow of coolants through parallel rectangular micro-channels. In the experimental study, the cooling performance of the micro heat exchanger was tested on prototypes of stacked multi-chip modules with difference channel dimensions. The simulation results and the experiment data were acceptably accordant within a wide range of design variations, suggesting the numerical procedure as a useful method for designing the cooling mechanism in stacked multi-chip packages and similar electronic applications.

A Numerical Study of NAND Flash Memory on the cooling effect (낸드플래시 메모리의 냉각효과에 관한 수치적 연구)

  • Kim, Ki-Jun;Koo, Kyo-Woog;Lim, Hyo-Jae;Lee, Hyouk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.117-123
    • /
    • 2011
  • The low electric power and high efficiency chips are required because of the appearance of smart phones. Also, high-capacity memory chips are needed. e-MMC(embedded Multi-Media Card) for this is defined by JEDEC(Joint Electron Device Engineering Council). The e-MMC memory for research and development is a memory mulit-chip module of 64GB using 16-multilayers of 4GB NAND-flash memory. And it has simplified the chip by using SIP technique. But mulit-chip module generates high heat by higher integration. According to the result of study, whenever semiconductor chip is about 10 $^{\circ}C$ higher than the design temperature it makes the life of the chip shorten more than 50%. Therefore, it is required that we solve the problem of heating value and make the efficiency of e-MMC improved. In this study, geometry of 16-multilayered structure is compared the temperature distribution of four different geometries along the numerical analysis. As a result, it is con finned that a multilayer structure of stair type is more efficient than a multilayer structure of vertical type because a multi-layer structure of stair type is about 9 $^{\circ}C$ lower than a multilayer structure of vertical type.

  • PDF

An Implementation of The Embedded-Based Multi Mode Receiver Module & Demuxer (임베디드용 멀티모드 방송 수신 모듈 및 역다중화기 설계 및 구현)

  • Kwon, KiWon;Kim, SeongJun;Park, SeHo;Park, YoungSuk;Hong, SukGun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.2
    • /
    • pp.62-67
    • /
    • 2011
  • In this paper, Multi Mode Receiver Module is designed in one H/W module for Multi-mode Digital Broadcasting. Multi mode means Digital TV, Mobile TV and Digital Radio on the Broadcasting. and T-DMB, DAB(+), ISDB-T and DVB-T standard. Our Module can receive various broadcasting signal such as ISDB-T, DVB-T and DAB. The Multi mode Receiver Module & demuxer was implemented using the one SoC Chip has good performances to receive the multi mode signals as well as standard interface such as SPI, to connect the main CPU Unit.

Design and Build of Transmit/Receive Module for X Band (X 대역 T/R 모듈의 설계 및 구현)

  • Park, Sung-Kyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.168-173
    • /
    • 2008
  • In this paper, we have designed transmit/receive Module for X band which can be applied to active phase array radar system. AESA(active electrically beam steered array) is able to transmit high power as like TWTA with composition of TH Module and steer a main beam faster than mechanically steering system. The proposed structure of T/R Module for X band is brick type for physical structure, common leg structure electrically and small size design as MCM(multi chip module). The results show that the characteristic of proposed T/R module can fully cover the specification of required military radar application.

A Design and Fabrication of the Brick Transmit/Receive Module for K Band (K 대역 브릭형 능동 송수신 모듈의 설계 및 제작)

  • Lee, Ki-Won;Moon, Ju-Young;Yun, Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.940-945
    • /
    • 2008
  • In this paper, we have designed the Brick Transmit/Receive Module for K-band which can be applied to active phase array radar system. The proposed structure of T/R Module for K band is brick type for MCM(Multi Chip Module) form and the satisfaction of tile type T/R Module can apply to structure of cavity and main characteristic. The fabricated brick type T/R Module confirmed the main characteristic for electrical goal performance in test and this structure can be applied to active phase array radar.

Development of the Flip-Chip Bonder using multi-DOF Motion Stage and Vision System (다자유도 구동스테이지와 비전시스템을 이용한 플립칩 본더 개발)

  • 황달연;전승진;김기범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1717-1722
    • /
    • 2003
  • In this paper we developed flip-chip bonder using XY stage, liner-rotary actuator and vision system. We depicted the major parts of the developed flip-chip bonder. Then we discussed several problems and their solutions such as vision and motion control, pick-up module position accuracy, separation of chip from the blue taped hoop, etc. We used a post guide to improve the horizontal positional accuracy against the long arm. Also, we used an ejector module and synchronization technique for easy chip separation from the blue tape.

  • PDF

Study on the structure of buried type capacitor for MCM (Multi-Chip-Module) (MCM-C(Multi-Chip-Module)용 내장형 캐패시터의 구조적 특성에 관한 연구)

  • Yoo, C. S.;Lee, W. S.;Cho, H. M.;Lim, W.;Kwak, S. B.;Kang, N. K.;Park, J. C.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.49-53
    • /
    • 1999
  • In this study, the characteristics of the structure of buried type capacitor for RF multi- chip-module are investigated. We developed many kinds of structures to minimize the space of capacitor in module and the value of parastic series inductance without any loss in capacitance, and in this procedure the effect of vias especially position, size, number length are analyzed and optimized. This characteristics of structures are checked through HFSS(high frequency structure simulator) of HP, and the value of parastic series inductance is calculated by equivalent circuit analysis. And ensuing the result of simulation, we made buried type capacitors using LTCC (low temperature cofired ceramic) material. In measurement of this sample, we found out the effective and precise method can be applied to buried type and characteristics of vias and striplines added for measuring are quantified.

  • PDF

One-Touch Type Immunosenging Lab-on-a-chip for Portable Point-of-care System (휴대용 POC 시스템을 위한 원터치형 면역 센싱 랩온어칩)

  • Park, Sin-Wook;Kang, Tae-Ho;Lee, Jun-Hwang;Yoon, Hyun-C.;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1424-1429
    • /
    • 2007
  • This paper presents a simple and reliable one-touch type multi-immunosensing lab-on-a-chip (LOC) detecting antibodies as multi-disease markers using electrochemical method suitable for a portable point-of-care system (POCS). The multi-stacked LOC consists of a PDMS space layer for liquids loading, a PDMS valve layer with 50 im in height for the membrane, a PDMS channel layer for the fluid paths, and a glass layer for multi electrodes. For the disposable immunoassay which needs sequential flow control of sample and buffer liquids according to the designed strategies, reliable and easy-controlled on-chip operation mechanisms without any electric power are necessary. The driving forces of sequential liquids transfer are the capillary attraction force and the pneumatic pressure generated by air bladder push. These passive fluid transport mechanisms are suitable for single-use LOC module. Prior to the application of detection of the antibody as a disease marker, the model experiments were performed with anti-DNP antibody and anti-biotin antibody as target analytes. The flow test results demonstrate that we can control the fluid flow easily by using the capillary stop valve and the PDMS check valves. By the model tests, we confirmed that the proposed LOC is easily applicable to the bioanalytic immunosensors using bioelectrocatalysis.