• Title/Summary/Keyword: Multi-body system

Search Result 514, Processing Time 0.029 seconds

Impact Dynamic Analysis for the Wheel-Type Landing Gear System of Helicopter (헬리콥터 휠타입 착륙장치 충돌특성 연구)

  • Park, Hyo-Geun;Kim, Dong-Man;Kim, Dong-Hyun;Cho, Yun-Mo;Chung, Jae-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.12-22
    • /
    • 2008
  • In this study, the dynamic characteristics for the wheel-type landing gear system of helicopter have been analyzed. Nonlinear multi-body dynamic models of the landing gear system are constructed and the equations of motion, kinematics and internal forces of shock strut are considered. In addition, flexibility effect of the wheel axle with equivalent beam element is taken into account. General purpose commercial finite code, SAMCEF which includes MECANO module is applied. The results of dynamic simulation for various landing and weight conditions are presented and compared with each other. Based on the results, characteristics of impact dynamic behaviors of the landing gear system are practically investigated.

A MULTI-DOMAIN APPROACH FOR A HYBRID PARTICLE-MESH METHOD (Hybrid Particle-Mesh 방법에 적합한 다중영역 방법)

  • Lee, Seung-Jae;Suh, Jung-Chun
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.72-78
    • /
    • 2014
  • A hybrid particle-mesh method as the combination between the Vortex-In-Cell (VIC) method and penalization method has been achieved in recent years. The VIC method, which is based on the vorticity-velocity formulation, offers particle-mesh algorithms to numerically simulate flows past a solid body. The penalization method is used to enforce boundary conditions at a body surface with a decoupling between body boundaries and computational grids. The main advantage of the hybrid particle-mesh method is an efficient implementation for solid boundaries of arbitrary complexity on Cartesian grids. However, a numerical simulation of flows in large domains is still not too easy. In this study, a multi-domain approach is thus proposed to further reduce computation cost and easily implement it. We validate the implementation by numerical simulations of an incompressible viscous flow around an impulsively started circular cylinder.

Numerical Simulation of Body Motion Using a Composite Grid System (중첩 격자계를 이용한 물체운동의 수치 시뮬레이션)

  • 박종천;전호환;송기종
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.36-42
    • /
    • 2003
  • A CFD simulation technique has been developed to handle the unsteady body motion with large amplitude by use of overlapping multi-block grid system. The three-dimensional, viscous and incompressible flow around body is investigated by solving the Navier-Stokes equations, and the motion of body is represented by moving effect of the grid system. Composite grid system is employed in order to deal with both the body motion with large amplitude and the condition of numerical wave maker in convenience at the same time. The governing equations, Navier-Stokes (N-S) and continuity equations, are discretized by a finite volume method, in the framework of an O-H type boundary-fitted grid system (inner grid system including test model) and a rectangular grid system (outer grid system including simulation equipments for generation of wave environments). If this study, several flow configurations, such as an oscillating cylinder with large KC number, are studied in order to predict and evaluate the hydrodynamic forces. Furthermore, the motion simulation of a Series 60 model advancing in a uniform flow under the condition of enforced roll motion of angle 20$^{\circ}$ is performed in the developed numerical wave tank.

Design of A Downlink Power Control Scheme in Unequal Error Protection Multi-Code CDMA Mobile Medicine System

  • Lin, Chin-Feng;Lee, Hsin-Wang;Hung, Shih-Ii;Li, Ching-Yi
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.335-338
    • /
    • 2005
  • In this paper, we propose a downlink power control scheme to apply in the unequal error protection multi-code CDMA mobile medicine system. The mobile medicine system contains (i) blood pressure and body temperature measurement value, (ii) ECG medical signals measured by the electrocardiogram device, (iii) mobile patient's history, (iv) G.729 audio signal, MPEG-4 CCD sensor video signal, and JPEG2000 medical image. By the help of the multi-code CDMA spread spectrum communication system with downlink power control scheme and unequal error protection strategy, it is possible to transmit mobile medicine media and meet the quality of service. Numerical analysis and simulation results show that the system is a well transmission platform in mobile medicine.

  • PDF

Multi-agent System based on Blackboard System for Soccer Robot Implementation

  • Sanornoi, Nitiwat;Phurahong, Boonchana;Sooraksa, Pitikhate
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2023-2028
    • /
    • 2004
  • This paper reveals the utilization of the multi-gent system that based on the Blackboard system basis as the controller of Soccer Robot. This system is a portion of developing the Soccer Robot team for Robocup 2004 Competition. In this development, the intelligent control system was initiated by the combination of parallel and distributed blackboard structures with the principle design that generated from human body structures, which consists of the combination of two main systems, the organs system and the brain system. The system is designed using the control system theory based on Blackboard basis. Modification of the initial structures to corroborate the Soccer Robot and the structure's constituents are clarified accordingly. To demonstrate the idea, ITE-old team is given as a case study.

  • PDF

Kinematic Analysis of the Multi-Link Five-Point Suspension System in Point Coordinates

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1133-1139
    • /
    • 2003
  • In this paper, a numerical algorithm for the kinematic analysis of a multi-link five-point suspension system is presented. The kinematic analysis is carried out in terms of the rectangular Cartesian coordinates of some defined points in the links and at the joints. Geometric constraints are introduced to fix the relative positions between the points belonging to the same rigid body. Position, velocity and acceleration analyses are carried out. The presented formulation in terms or this system of coordinates is simple and involves only elementary mathematics. The results of the kinematic analysis are presented and discussed.

Modal Analysis of Human Leg with Respect to Hip Joint Position by Using Multibody Modeling (다물체 모델링을 통한 Hip Joint 위치에 따른 인체 Leg부의 고유진동특성 분석)

  • NamGoong, Hong;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.761-766
    • /
    • 2010
  • The goal of this study is to analysis natural frequency for different static postures of human leg. To perform this research human leg is modeled by multi-body modeling for the musculoskeletal system. This leg model has biarticular muscles which acting on two joints and the muscles represents some of the major muscles, such as hamstring, of the upper and lower limbs. To obtain each static equilibrium position energy method is employed and to analysis natural frequency linearization method for constrained mechanical system is employed. Static equilibrium position depends on some parameter or condition such as hamstring stiffness or external force. Making a change these parameter the aim of this research can be performed.

Optimization of the Spring Design Parameters of a Circuit Breaker to Satisfy the Specified Dynamic Characteristics

  • Gil Young;Kwang Young
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.43-49
    • /
    • 2004
  • A spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of the electric contacts of a vacuum circuit breaker. If the type of a circuit breaker and the structure of the linkage system are predetermined, then design parameters such as stiffness, free length and attachment points of the spring become the important issues. In this paper, based on the energy conservation, the total system energy is constant throughout the operating range of the mechanism; a systematic procedure to optimize the spring design parameters is developed and applied to a simplified mechanism of a circuit breaker. The developed procedure is converted to the environment of the multi-body dynamics program, ADAMS for an in-depth consideration of the complex dynamics of a circuit breaker mechanism.

Simulation Based for Intelligent Control System of Multi - Humanoid Robots for Stable Load Carrying (시뮬레이션에 기반한 휴머노이드 로봇 두 대의 안정적인 물체 운반 및 제어 연구)

  • Kim, Han-Guen;Kim, Hyung-Jean;Park, Won-Man;Kim, Yoon-Hyuk;Kim, Dong-Han;An, Jin-Ung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.120-125
    • /
    • 2010
  • This paper proposes an intelligent PID/Fuzzy control system for two humanoid robots to transport objects stably. When a robot transports an object while walking, a whole body system of a robot may not be stable due to vibration or external factors from a different departure speed error and a body movement of walking robots. Therefore, it is necessary to measure the horizontal and vertical locations and speeds of object, then calibrate the difference of departure speed between robots with PID/Fuzzy control. The results of simulation with two robots indicated that a proposed controller makes robots to transport an object stably.

Optimization of the Spring Design Parameters of a Circuit Breaker for Satisfying Specified Dynamic Characteristics (규정된 동적특성을 위한 회로차단기의 스프링 설계변수의 최적화)

  • 안길영;정광영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.132-138
    • /
    • 2004
  • In a vacuum circuit breaker mechanism, a spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of electric contacts. If the type and structure of the linkage system required to the circuit breaker is predetermined, the stiffness, free length and attachment points of a spring become the important design parameters. In this paper, based on the energy conservation that the total system energy is constant throughout the operating range of the mechanism, a systematic procedure for optimizing the spring design parameters is developed and applied to the simplified mechanism of a circuit breaker. Then, in order to consider the complex dynamics of the circuit breaker mechanism rather well, the developed procedure is converted to the environment of a multi-body dynamics program ADAMS.