• Title/Summary/Keyword: Multi-body Modeling

Search Result 113, Processing Time 0.04 seconds

Measuring hand kinematics in handball's game: A multi-physics simulation

  • Kun, Qian;Sanaa, Al-Kikani;H. Elhosiny, Ali
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2022
  • Handball sport, as its name postulates, is a team sport which highly physical workout. During a handball play, several ball impacts are applied on the hands resulting vibration in the forearm, upper arm, shoulders and in general in whole body. Hand has important role in the handball's game. So, understanding about the dynamics and some issues that improve the stability of the hand is important in the sport engineering field. Ulna and radius are two parallel bones in lower arm of human hand which their ends are located in elbow and wrist joint. The type of the joint provides the capability of rotation of the lower arm. These two bones with their ends conditions in the joints constructs a 4-link frame. The ulna is slightly thinner than radius. So, understanding about hand kinematics in handball's game is an important thing in the engineering field. So, in the current work with the aid of a multi-physics simulation, dynamic stability analysis of the ulna and radius bones will be presented in detail.

Modeling the Multi-Dimensional Phenomenon of Fatiguing by Assessing the Perceived Whole Body Fatigue and Local Muscle Fatigue During Squat Lifting (무릎들기 작업 시 전신피로 감지 수준과 근육 피로도를 활용한 다면적 피로현상 모델링)

  • Ahmad, Imran;Kim, Jung-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • Whole body fatigue detection is an important phenomenon and the factors contributing to whole body fatigue can be controlled if a mathematical model is available for its assessment. This research study aims at developing a model that categorizes whole body exertion into fatigued and non-fatigued states based on physiological and perceived variables. For this purpose, logistic regression was used to categorize the fatigued and non-fatigued subject as dichotomous variable. Normalized mean power frequency of eight muscles from 25 subjects was taken as physiological variable along with the heart rate while Borg scale ratings were taken as perceived variables. The logit function was used to develop the logistic regression model. The coefficients of all the variables were found and significance level was checked. The detection accuracy of the model for fatigued and non-fatigues subjects was 83% and 95% respectively. It was observed that the mean power frequency of anterior deltoid and the Borg scale ratings of upper and lower extremities were significant in predicting the whole body fatigued when evaluated dichotomously (p < 0.05). The findings can help in better understanding of the importance of combined physiological and perceived exertion in designing the rest breaks for workers involved in squat lifting tasks in industrial as well as health sectors.

A Study on the Injury Assessment of Helicopter's Crew with Multi Point Restraint System under Drop Impact (낙하 충격을 받는 다점 구속 장치를 착용한 헬기 승무원의 상해도 평가에 관한 연구)

  • Lee, Jung-Hyun;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.590-599
    • /
    • 2009
  • In this paper, a method of modeling seat belts on crew seat during dynamic seat testing was studied. The body segments of the occupant were modeled with joints. The joints consisted with various stiffnesses, dampings, and frictions. Three types of seat belt restraint systems were investigated. The analysis for on the injury assessment of helicopter's crew under drop impact was conducted. The effectiveness of the seat belt system for crashworthiness and safety was evaluated. As the results of impact analysis, head, neck and spine of the crew can be easily damaged in the vertical direction more than the longitudinal direction. Based on the verified model, behavior of human body was studied with three-point restraint systems. The displacement and injury level of the 12-point restraint system was the smallest.

Vibration Prediction of Helicopter Airframe (헬리콥터 동체의 진동 예측)

  • Yun, Chul Yong;Kim, Do-Hyung;Kang, Hee Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.340-346
    • /
    • 2013
  • This paper describes a helicopter vibration induced by main rotor in forward flight. The hub loads in the fixed frame, which are dominant source of helicopter vibration, are obtained by multi-blade summation of rotating blades loadings. The components of 3/rev, 4/rev, and 5/rev blades loadings are transmitted by blades to 4/rev hub loads in the fixed frame. The vertical vibrations of helicopter at pilot seat and copilot seat are calculated through rigid body transfer functions considering airframe to be rigid body. The blades are assumed to be elastic and undergo the flap, lag, and torsion motion and free wake aerodynamic model is used to calculate the precise blade loadings in the analysis. The 4/rev vertical vibration responses are analyzed from rotating blade loadings and fixed hub loadings.

  • PDF

Seismic responses of base-isolated buildings: efficacy of equivalent linear modeling under near-fault earthquakes

  • Alhan, Cenk;Ozgur, Murat
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1439-1461
    • /
    • 2015
  • Design criteria, modeling rules, and analysis principles of seismic isolation systems have already found place in important building codes and standards such as the Uniform Building Code and ASCE/SEI 7-05. Although real behaviors of isolation systems composed of high damping or lead rubber bearings are nonlinear, equivalent linear models can be obtained using effective stiffness and damping which makes use of linear seismic analysis methods for seismic-isolated buildings possible. However, equivalent linear modeling and analysis may lead to errors in seismic response terms of multi-story buildings and thus need to be assessed comprehensively. This study investigates the accuracy of equivalent linear modeling via numerical experiments conducted on generic five-story three dimensional seismic-isolated buildings. A wide range of nonlinear isolation systems with different characteristics and their equivalent linear counterparts are subjected to historical earthquakes and isolation system displacements, top floor accelerations, story drifts, base shears, and torsional base moments are compared. Relations between the accuracy of the estimates of peak structural responses from equivalent linear models and typical characteristics of nonlinear isolation systems including effective period, rigid-body mode period, effective viscous damping ratio, and post-yield to pre-yield stiffness ratio are established. Influence of biaxial interaction and plan eccentricity are also examined.

The Effects of Appearance-Related Photo Activity and Appearance Comparison on Body Satisfaction -Focusing on the Moderating Effects of Instagram Addiction- (인스타그램 외모관련 사진활동, 외모비교가 신체만족도에 미치는 영향 -인스타그램 중독수준의 조절효과를 중심으로-)

  • Lee, Minsun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.1
    • /
    • pp.81-94
    • /
    • 2019
  • Social media is an essential part of everyday life in modern society and plays an important role in communicating the ideal body image. With the increased prevalence and high popularity of social media, the problems associated with the addictive use of social media have become a social issue. Utilizing social comparison theory, this study examined (1) the effect of appearance related photo activities on body satisfaction through appearance comparison and (2) the moderating effect of Instagram addiction in relationships among appearance related photo activity, appearance comparison, and body satisfaction. We tested the proposed relationships between research variables using multi-group structural equation modeling analysis on a sample of 346 young female Instagram users. The sample was divided into two groups of high and low addicted Instagram users. The results of this study showed that the appearance related photo activity positively influenced appearance comparison for both high and low addiction groups. For the high addiction group, the effect of appearance comparison on body satisfaction was not statistically significant; however, this relationship was significant and negative for the low addiction group. A significant moderating effect of Instagram addiction was found in the relationship between appearance related photo activity and appearance comparison.

Collision Analysis of the Next Generation High-speed EMU Using 3D/1D Hybrid FE Model (3D/1D 하이브리드 유한요소 모델을 이용한 동력 분산형 차세대 고속열차 전체차량의 충돌 해석)

  • Kim, Geo-Young;Koo, Jeong-Seo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.67-76
    • /
    • 2012
  • In this paper, collision analysis of the full rake for the Next Generation High-speed EMU is conducted using a 3D/1D hybrid model, which combines 3-dimensional (3D) front-end structure of finite element model and 1-dimensional (1D) multi-body dynamics model in order to analyze train collision with a standard 3D deformable obstacle. The crush forces, passengers' accelerations and energy absorptions of a full rake train can be easily obtained through a simulation of a 1D dynamics model composed of nonlinear springs, dampers and masses. Also the obtained simulation results are very similar to those of a 3D model if an overriding behavior does not occur during collision. The standard obstacle in TSI regulation has been changed from a rigid body to a deformable body, and therefore 3D collision simulations should be conducted because their simulation results depends on the front-end structure of a train. According to the obstacle collision analysis of this study, the obstacle collides with the driver's upper structure after overriding over the front-end module. The 3D/1D hybrid model is effective to evaluate a main energy-absorbing module that is frequently changed during design process and reduce the need time of the modeling and analysis when compared to a 3D full car body.

Measurement and Modeling of Personal Exposure to the Electric and Magnetic Fields in the Vicinity of High Voltage Power Lines

  • Tourab, Wafa;Babouri, Abdesselam
    • Safety and Health at Work
    • /
    • v.7 no.2
    • /
    • pp.102-110
    • /
    • 2016
  • Background: This work presents an experimental and modeling study of the electromagnetic environment in the vicinity of a high voltage substation located in eastern Algeria (Annaba city) specified with a very high population density. The effects of electromagnetic fields emanating from the coupled multi-lines high voltage power systems (MLHV) on the health of the workers and people living in proximity of substations has been analyzed. Methods: Experimental Measurements for the Multi-lines power system proposed have been conducted in the free space under the high voltage lines. Field's intensities were measured using a referenced and calibrated electromagnetic field meter PMM8053B for the levels 0 m, 1 m, 1.5 m and 1.8 m witch present the sensitive's parts as organs and major functions (head, heart, pelvis and feet) of the human body. Results: The measurement results were validated by numerical simulation using the finite element method and these results are compared with the limit values of the international standards. Conclusion: We project to set own national standards for exposure to electromagnetic fields, in order to achieve a regional database that will be at the disposal of partners concerned to ensure safety of people and mainly workers inside high voltage electrical substations.

Three-Dimensional Sheet Modeling Using Relative Coordinate (상대 좌표를 이용한 종이류 모델링 기법)

  • Cho Heui Je;Bae Dae Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.247-252
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

Simulation and Experimental Methods for Media Transport System: Part I, Three-Dimensional Sheet Modeling Using Relative Coordinate

  • Cho, Heui-Je;Bae, Dea-Sung;Choi, Jin-Hwan;Lee, Soon-Geul;Rhim, Sung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.305-311
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.