• 제목/요약/키워드: Multi-body Dynamic Analysis

검색결과 264건 처리시간 0.032초

유한요소법을 사용한 강체운동을 하는 다중보계의 동적 해석 (Dynamics Analysis of a Multi-beam System Undergoing Overall Rigid Body Motion Employing Finite Element Method)

  • 최신;유홍희
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2266-2273
    • /
    • 2000
  • Equations of motion of a multi-beam system undergoing overall rigid body motion are derived by employing finite element method. An orientation angle is employed to allow the arbitrary orientation o f the beam element. Modal coordinate reduction technique, which has been successfully utilized in the conventional linear modeling method, is employed for the present modeling method to reduce the computational effort. Different from the conventional linear modeling method, the present modeling method captures the motion-induced stiffness variations which are important for the dynamic analysis of structures undergoing overall rigid body motion. The numerical results are compared to those of a commercial program to verify the reliability of the present method.

다물체계의 평형위치에서 고유진동수에 대한 공차해석 (Tolerance Analysis for Natural Frequencies of Multi-body Systems in Dynamic Equilibrium State)

  • 엄승만;최동환;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.95-100
    • /
    • 2006
  • Tolerance analysis method for natural frequencies of multi-body systems having a equilibrium position is suggested in this paper. To perform the tolerance analysis, the Monte-Carlo Method is conventionally employed. However, the Monte-Carlo Method has some weakness; spending too much time for analysis and having a low accuracy and hard to converge in the numerical unstable area. To resolve these problems, a tolerance analysis method is suggested in this paper. Sensitivity equations of natural frequencies are derived at the equilibrium position. By employing the sensitivity information of mass, damping and stiffness matrices, the sensitivity of natural frequencies can be calculated.

  • PDF

다물체계의 평형위치에서 고유진동수에 대한 공차해석 (Tolerance Analysis for Natural Frequencies of Multi-body Systems in Dynamic Equilibrium State)

  • 엄승만;최동환;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제17권1호
    • /
    • pp.65-71
    • /
    • 2007
  • Tolerance analysis method for natural frequencies of multi-body systems having a equilibrium position is suggested in this paper. To perform the tolerance analysis, the Monte-Carlo Method is conventionally employed. However, the Monte-Carlo Method has some weakness; spending too much time for analysis and having a low accuracy and hard to converge in the dynamical unstable area. To resolve these problems, a tolerance analysis method is suggested in this paper. Sensitivity equations of natural frequencies are derived at the equilibrium position. By employing the sensitivity information of mass, damping and stiffness matrices, the sensitivity of natural frequencies can be calculated.

Dynamic Analysis of Multi-body Systems Considering Probabilistic Properties

  • Choi, Dong-Hwan;Lee, Se-Jeong;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.350-356
    • /
    • 2005
  • A method of dynamic analysis of mechanical systems considering probabilistic properties is proposed in this paper. Probabilistic properties that result from manufacturing tolerances can be represented by means and standard deviations (or variances). The probabilistic characteristics of dynamic responses of constrained multi-body systems are obtained by two ways : the proposed analytical approach and the Monte Carlo simulation. The formerpaper, necessitates sensitivity information to calculate the standard deviations. In this a direct differentiation method is employed to find the sensitivities of constrained multi-body systems. To verify the accuracy of the proposed method, numerical examples are solved and the results obtained by using the proposed method are compared to those obtained by Monte Carlo simulation.

Car Ride Safety and Comfort Analysis considering Low-frequency Vibration of Car Body

  • Kang, Sang-Wook
    • International Journal of Safety
    • /
    • 제6권1호
    • /
    • pp.7-10
    • /
    • 2007
  • In this paper, we found that modification of the local flexibility (or local stiffness) of the 4 parts on which shock absorbers are mounted in the vehicle body has some influence the level of ride safety and comfort. Multi-body dynamic analysis considering the flexibility of the vehicle body is performed using MSC/ADAMS and MSC/NASTRAN. More concretely speaking, natural frequencies and mode shapes computed by MSC/NASTRAN are used as input data for multi-body dynamic analysis in MSC/ADAMS. It is confirmed that the ride comfort can be improved by appropriately changing the local stiffness of the vehicle body through several simulations using MSC/ADAMS.

다족 보행 로봇 시스템의 이동성 및 민첩성 (Mobility and Agility of Multi-legged Walking Robot System)

  • 심형원;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1146-1154
    • /
    • 2008
  • This paper presents a method for the acceleration analysis of multi-legged walking robots in consideration of the frictional ground contact. This method is based on both unified dynamic equation for finding the acceleration of a robot's body and constraint equation for satisfying no-slip condition. After the dynamic equation representing relationship between actuator torques and body acceleration, is derived from the force and acceleration relationship between foot and body's gravity center, the constraint equation is formulated to reconfigure the maximum torque boundaries satisfying no-slip condition from given original actuator torque boundaries. From application of the reconfigured torques to the dynamic equation, interested acceleration boundaries are obtained. The approach based on above two equations, is adapted to the changes of degree-of-freedoms of legs as well as friction of ground. And the method provides the maximum translational and rotational acceleration boundaries of body's center that are achievable in every direction without occurring slipping at the contact points or saturating all actuators. Given the torque limits in infinite normsense, the resultant accelerations are derived as a polytope. From the proposed method, we obtained achievable acceleration boundaries of 4-legged and 6-legged walking robot system successfully.

회전 차축 및 유기압 현가장치를 장착한 대용량 세미 트레일러의 주행 동특성 해석 (Analysis for the Driving Dynamic Characteristics of Large Scale Semi-Trailer Equipped with Swivel Axle and Hydropneumatic Suspension Unit)

  • 하태완;박정수
    • 한국군사과학기술학회지
    • /
    • 제25권2호
    • /
    • pp.196-209
    • /
    • 2022
  • Driving dynamic characteristics of semi-trailer loaded with precise equipments are very important to protect them from vibration, impact or other disturbances. In this paper, in order to identify the driving dynamic characteristics of the large scale semi-trailer equipped with swivel axle and hydropneumatic suspension unit, Dynamics Modeling & Simulation(M&S) were performed using general Dynamics Analysis Program(RecurDyn V9R2). The semi-trailer was modeled as two types - one is Multi Rigid Body Dynamics(MRBD) model, and the other Rigid-Flexible Body Dynamics(RFlex) one. The natural vibration mode and frequencies of semi-trailer body, acceleration of dummy-weight, pitch, roll and yaw of dummy-weight, swivel axle and hydropneumatic suspension cylinder support structure, and acting force of hydropneumatic suspensions etc. were obtained from the M&S. Additionally frequency analysis were performed using the data of behavior obtained from above M&S. Generally the quantitative results of RFlex are larger than them of MRBD in view of magnitude of the comparable parametric values.

곡물의 균일한 이송을 위한 리니어 피더의 동특성 해석 (Dynamic Analysis of a Linear Feeder for Uniform Transformation of Grains)

  • 이규호;김성현;정진태
    • 한국소음진동공학회논문집
    • /
    • 제17권11호
    • /
    • pp.1069-1076
    • /
    • 2007
  • The purpose of this study is to improve the performance of a linear feeder that can transport grains uniformly. In order to analyze the dynamic behaviors of a linear feeder, the displacements of the feeder are measured by several accelerometers when it is in an operating condition. After the signal data from the accelerometers are captured in the time domain, the feeder motion in the space is visualized by using graphic computer software. In addition, a dynamic model of the feeder is established for a multi-body dynamics simulation. For the dynamic simulation, RecurDyn, which is a commercial multi-body dynamic package, is used. From the experimental and the computational approaches, an optimal dynamic motion is obtained for uniform transportation of grains. Furthermore, we also consider the determination of design parameters for optimal dynamic motion such as centroid, stiffness, and damping coefficient of the feeder system.

DADS를 이용한 초기 설계 단계에서의 경기용 차량의 핸들링 특성 해석 (Analysis of Race Car Handling Characteristics Using DADS in Initial Design Step)

  • 장운근
    • 한국산업융합학회 논문집
    • /
    • 제11권2호
    • /
    • pp.71-82
    • /
    • 2008
  • In this study, 3 dimensional non-linear race car vehicle model including Chassis, steering and suspension systems were modeled by using Multi-Body Dynamics Simulation Program, DADS 9.5(Dynamic Analysis and Design System),which was used in kinematic and dynamic analysis. A full race car vehicle dynamics model using DADS program was presented and analysis was carried out to estimate the handling characteristics that may be very useful to design a race car in early design stage. The simulation of vehicle handling behavior for step steering input was simulated and compared with different design parameters: torsional stiffness of the front and rear anti roll bars, the motion ratio of the front and rear suspension system, the location of the tie rod joint, in multibody dynamic model. Therefore this simulation model before race car construction in early design step will be helpful for race car designer to save time and limited budget.

  • PDF