• 제목/요약/키워드: Multi-body

검색결과 1,354건 처리시간 0.026초

발열 전도체가 존재하는 밀폐계 내부의 자연대류 현상에 대한 수치적 연구 (Numerical Simulation of Natural Convection in Horizontal Enclosure with Heat-Generating Conducting Body)

  • 이재룡;하만영
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.441-452
    • /
    • 2005
  • The physical model considered here is a horizontal layer of fluid heated below and cold above with heat-generating conducting body placed at the center of the layer. The dimensionless thermal conductivities of body considered in the present study are 0.01, 1 and 150. The dimensionless temperature difference ratios considered are 0.25, 2.5 and 25. Two-dimensional solution for unsteady natural convection is obtained using an accurate and efficient Chebyshev spectral methodology for variety of Rayleigh number from $10^{3}\;to\;10^{6}.$ Multi-domain technique is used to handle square- shaped heat-generating conducting body. The results for the case of conducting body with heat generation are also compared to those without heat generation.

다물체 모델링을 통한 Hip Joint 위치에 따른 인체 Leg부의 고유진동특성 분석 (Modal Analysis of Human Leg with Respect to Hip Joint Position by Using Multibody Modeling)

  • 남궁홍;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제20권8호
    • /
    • pp.761-766
    • /
    • 2010
  • The goal of this study is to analysis natural frequency for different static postures of human leg. To perform this research human leg is modeled by multi-body modeling for the musculoskeletal system. This leg model has biarticular muscles which acting on two joints and the muscles represents some of the major muscles, such as hamstring, of the upper and lower limbs. To obtain each static equilibrium position energy method is employed and to analysis natural frequency linearization method for constrained mechanical system is employed. Static equilibrium position depends on some parameter or condition such as hamstring stiffness or external force. Making a change these parameter the aim of this research can be performed.

CIP 방법을 사용한 해석법 (A NUMERICAL ANALYSIS USING CIP METHOD)

  • 이정희;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.211-217
    • /
    • 2009
  • The numerical program has been developed for the purpose of the complicate geometries application using CIP method. The non-staggered, non-orthogonal, and unstructured grid system can be also used for the various geometries in the program. For validating CIP solver, the lid-driven cavity flow and solitary wave propagation flow are carried out. Test results show a good agreement with the verified results. The dynamic solver was used for the behavior of moving body. Interface process between the two solvers is introduced. The research was performed on the flow problem around torpedo and log and the flow problem in a tank in order to analyze the three phase flow problem Although the comparison to the verified results was not quantitatively performed, the trend of the results was reasonable.

  • PDF

유연 회전축의 다물체 동역학 모델링 및 위상 조절법을 이용한 진동 제어 (Multi-Body Dynamic Modeling for a Flexible Rotor and Vibration Control using a Novel Phase Adjusting Technique)

  • 정훈형;조현민;김재실;조수용
    • 한국기계가공학회지
    • /
    • 제10권1호
    • /
    • pp.87-92
    • /
    • 2011
  • This article proposes a new technique of the dynamic model using multi-body dynamic analysis tool for a flexible main spindle rotor system with a novel phase adjusting control technique for the purpose of an active control of rotor vibration. The dynamic model is used as a plant model. Also in order to make control system, a component parameters and phase controller is composed and simulated by SIMULINK. The vibration is reduced to 50%. Therefore the ADAMS dynamic model for the flexible main spindle rotor and the phase adjusting control techniques may be effective for the suppressing the vibration and helpful for the future active control for rotor vibration.

터빈 블레이드의 구조동역학해석에 근거한 시스템 인자들의 고사이클 피로수명에 대한 영향도분석 (Study on the Effects of System Parameters on the High Cycle Fatigue Life Based on Structural Dynamic Analysis of a Turbine Blade System)

  • 권성훈;송필곤;박종현;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.875-879
    • /
    • 2007
  • The effects of the statistical properties of the Coulomb friction coefficients on the dynamic responses of a galloping quadruped robot are investigated in this paper. In general, the Coulomb friction coefficients are assumed to be deterministic for a controller design to achieve required motion characteristics. However, the friction coefficients between the ground and the robot legs are not constant in reality. Therefore, statistical characteristics of the friction coefficients need to be considered for a multi-body modeling of the robot galloping on the ground. The effects of the statistical properties on the dynamic responses of the quadruped robots are investigated.

  • PDF

쿨롱 마찰계수들의 통계적 특성을 고려한 지면과 갤러핑을 하는 4 족 로봇간 접촉 모델링 (Contact Modeling between the Ground and the Galloping Quadruped Robot Considering Statistical Characteristics of Coulomb Friction Coefficients)

  • 권성훈;박종현;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.826-830
    • /
    • 2007
  • The effects of the statistical properties of the Coulomb friction coefficients on the dynamic responses of a galloping quadruped robot are investigated in this paper. In general, the Coulomb friction coefficients are assumed to be deterministic for a controller design to achieve required motion characteristics. However, the friction coefficients between the ground and the robot legs are not constant in reality. Therefore, statistical characteristics of the friction coefficients need to be considered for a multi-body modeling of the robot galloping on the ground. The effects of the statistical properties on the dynamic responses of the quadruped robots are investigated.

  • PDF

구동력을 고려한 자전거 안정성에 관한 연구 (Study of Effect of Tractive Force on Bicycle Self-Stability)

  • 서병일
    • 대한기계학회논문집A
    • /
    • 제36권11호
    • /
    • pp.1319-1326
    • /
    • 2012
  • 본 논문은 구동력이 자전거의 self-stability 에 미치는 영향을 해석한다. 운전자의 제어를 고려하지 않는 자전거의 self-stability 는 자전거의 선형 모델로부터 고유치를 구하여 해석 할 수 있다. 전륜과 후륜에 작용하는 자전거 구동력을 고려한 선형모델을 개발하고 이로부터 구동력이 안정성에 미치는 영향을 규명하였다. 선형모델의 결과가 다물체 동역학 모델의 시뮬레이션을 통한 비선형 자전거 모델에서도 같은 결과를 보임을 확인하였다.

회전 및 풍하중 가진 효과를 고려한 대형 풍력발전 로터의 효율적인 슈퍼요소 구조진동해석 (Efficient Super-element Structural Vibration Analyses of a Large Wind-turbine Rotor Blade Considering Rotational and Aerodynamic Load Effects)

  • 김동만;김동현;박강균;김유성
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.651-658
    • /
    • 2009
  • In this study, computer applied engineering(CAE) techniques are fully used to efficiently conduct structural and dynamic analyses of a huge composite rotor blade using super-element. Computational fluid dynamics(CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade. Structural vibration analysis is conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results are presented for comparison and the structural dynamic behaviors of the rotor blade are investigated herein.

다물체계의 자려진동 구현을 위한 마찰 모델링 (Friction Model to Realize Self-Excited Vibration of Multi-body Systems)

  • 노현영;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.103-108
    • /
    • 2007
  • This paper presents a friction model to realize self-excited vibration of multi-body systems. The friction coefficient is modeled with a spline function in most commercial codes. Even if such a function resolves the problem of discontinuity in friction force, it cannot realize self-excited vibration phenomena. Furthermore, as the relative velocity approaches zero, the friction coefficient approaches zero with the conventional model. So, slip occurs when small force is applied to the system. To avoid these problems a new friction model is proposed in this study. With the new friction model, the self-excited vibration can be realized since the friction coefficient changes with the relative velocity. Furthermore, the slip phenomena could be reduced significantly with the proposed model.

  • PDF

다물체 동역학 해석기술을 이용한 핸드레일의 슬립특성 개선 (Improvement of Handrail Slippage Characteristics Using Multi-Body Dynamic Analysis Technique)

  • 박찬종
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1422-1428
    • /
    • 2004
  • In this paper, computer simulation model of handrail band including pulley-driving system is developed to calculate handrail slippage. This handrail simulation model is validated with test result within operating range and used to predict its slippage behavior with respect to variation of 4 different design parameters considering the applicability into the real handrail system. Based upon this parameter study, optimal condition for handrail slippage improvement is proposed without time-consuming and costly experiments of the real handrail system. And then performance improvement of handrail slippage complied with safety code is achieved after applying the optimal condition into the real handrail band system.