• Title/Summary/Keyword: Multi-binders

Search Result 16, Processing Time 0.025 seconds

Evaluation of the Performance of Multi-binders (lime, DAP and ladle slag) in Treating Metal(loid)s-contaminated Soils (중금속류 오염 토양 처리를 위한 복합 고화제(lime, DAP, 래들 슬래그) 성능 평가)

  • Choi, Jiyeon;Shin, Won Sik
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.955-966
    • /
    • 2017
  • Amendment of multi-binders was employed for the immobilization of metal(loid)s in field-contaminated soils to reduce the leaching potential. The effect of different types of multi-binders (lime/diammonium phosphate, diammonium phosphate/ladle slag and lime/ladle slag) on the solidification/stabilization of metal(loid)s (Pb, Zn, Cu and As) from the smelter soil and mine tailing soil were investigated. The amended soils were evaluated by measuring Toxicity Characterization Leaching Procedure (TCLP) leaching concentration of metal(loid)s. The results show that the leaching concentration of metal(loid)s decreased with the immobilization using multi-binders. In terms of TCLP extraction, the mixed binder was effective in the order of lime/ladle slag > diammonium phosphate/ladle slag > lime/diammonium phosphate. When the mixed binder amendment (0.15 g lime+0.15 g ladle slag for 1g smelter soil and 0.05 g lime+0.1 g ladle slag for 1 g mine tailing soil, respectively) was used, the leaching concentration of metal(loid)s decreased by 90%. However, As leaching concentration increased with diammonium phosphate/lime and diammonium phosphate/ladle slag amendment competitive anion exchange between arsenic ion and phosphate ion from diammonium phosphate. The Standard, Measurements and Testing programme (SM&T) analysis indicated that fraction 1 (F1, exchangeable fraction) decreased, while fraction 4 (F4, residual fraction) increased. The increased immobilization efficiency was attributed to the increase in the F4 of the SM&T extraction. From this work, it was possible to suggest that both arsenic and heavy metals can be simultaneously immobilized by the amendment of multi-binder such as lime/ladle slag.

New Constitutive Equations for Asphalt Binder Fluids (아스팔트바인더 유체를 위한 새로운 특성방정식)

  • Huh, Jung-Do
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.57-67
    • /
    • 2005
  • Almost most of literatures treat behaviors of asphalt binders as a homogeneous single-phase fluid, but this generalization turns out to be a serious mistake. This study introduces all the characteristic equations for asphalt binders, which are modified or unmodified. Especially, characteristic equations for a unhomogeneous multi-phase fluid for modified asphalts is first time proposed. Characteristics of each equations introduced are explained by employing dynamic shear testing data actually measured for specific asphalt binders. Differences of moving behaviors and characteristic equations between a homogeneous single-phase and a unhomogeneous multi-phase fluid are emphasized. These differences help us understand which characteristic equations must be used for a given asphalt fluid and what kinds of properties must be investigated for analysis of a specific asphalt binder. Results of this study provide how to analyse modified and unmodified asphalts, and informations necessary for binder grading.

  • PDF

Solidification and Stabilization of Metal(loid)s-contaminated Soils using Single Binders (단일 고형화제를 이용한 중금속류 오염 토양의 고형화/안정화)

  • Park, Hye Ok;Choi, Jiyeon;Oh, Sanghwa;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.135-147
    • /
    • 2015
  • Remediation of metal(loid)s-contaminated sites is crucial to protect human and ecosystem. Solidification and stabilization of metal(loid)s by the binder amendment is one of the cost-effective technologies. In this study, metal (loid)s in various field-contaminated soils obtained from steel-making, metal refinery and mining tillage were immobilized by the application of single binders such as diammonium phosphate (DAP), lime, and ladle slag. The efficiency of solidification and stabilization was evaluated by Toxicity Characteristic Leaching Procedure (TCLP) and the Standard, Measurements and Testing programme of European Union (SM&T) extraction processes. In terms of TCLP extraction, the binder was effective in order of lime > DAP > ladle slag. All binders were highly effective in the immobilization of Pb, Zn, Cu, Ni, and Cd. The increased immobilization efficiency is attributed to the increase in the Step III and IV fractions of the SM&T extraction. Lime and ladle slag were highly effective in the immobilization of the metal(loid)s, however, As release increased with DAP due to competition between the phosphate originated from DAP and arsenate. A further study is needed for the better immobilization of multi metal(loid)s using binary binders.

Novel Flexible Supercapacitors Fabricated by Simple Integration of Electrodes, Binders, and Electrolytes into Glass Fibre Separators

  • Yoo, Joung Eun;Bae, Joonho
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.237-244
    • /
    • 2014
  • We report novel and simple structure of supercapacitors fabricated by using flexible glass fibre separators as templates. This method does not require separate electrodes, binders and high pressure/temperature to build the supercapacitor unit cells as required by the conventional technology. The supercapacitors were fabricated by drop-casting solution mixtures of carbonaceous active materials/gel electrolytes onto two sides of glass fibre separators. Two carbonaceous materials (nanoscaled activated carbons, multi-walled carbon nanotubes) were investigated as electrode materials. The electrochemical measurements reveal that the separatorbased supercapacitors using ACs successfully demonstrated significant mass specific capacitance ($22.3F\;g^{-1}$) and energy density ($9.7Wh\;kg^{-1}$), indicating this method can be useful in fabricating flexible, wearable and stretchable energy storage devices in more straightforward and cost-effective way than current technology.

Effect of Preparation Parameters of Sulfur Cathodes on Electrochemical Properties of Lithium Sulfur Battery

  • Zhao, Xiaohui;Kim, Dul-Sun;Ahn, Hyo-Jun;Kim, Ki-Won;Jin, Chang-Soo;Ahn, Jou-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.169-174
    • /
    • 2010
  • Sulfur cathodes were prepared by ball milling method with different types of electronic conductors and binders in different ball milling time. The sulfur cell with a cathode prepared in 45 min ball milling time gave an initial discharge capacity of 794mAh/g with Super-P as an electronic conductor and poly(vinylidene fluoride) as a binder. The cathode with multi-walled carbon nanotube as an electronic conductor showed an initial discharge capacity of 944 mAh/g and a discharge capacity of 300 mAh/g after 20 cycles. Cathodes with poly(ethylene oxide) and poly(vinylidene fluoride) as binders showed different cycle performance.

The Strength Characteristics of Activated Multi-Component Cement with Kaolinite (카올린을 혼합한 활성화된 다성분계 시멘트의 강도 특성)

  • Kim, Tae-Wan;Kim, Im-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.593-600
    • /
    • 2016
  • The paper presented investigates the effects of kaolinite on strength properties of alkali-activated multi-component cement. The binders of this study was blended of ground granulated blast furnace slag (GGBFS), fly ash (FA), silica fume (SF) and kaolinite (KA). In this study, the specimens of combination of 20%~70% GGBFS, 10%~60% FA, 10% SF (constant ratio) and 10%~50% KA binder were used for strength properties tests. The water/binder ratio was 0.5. The binders (GGBFS + FA + SF + KA) was activated by sodium hydroxide (NaOH) and sodium silicate ($Na_2SiO_3$) was 10% by total binder weight (10% NaOH + 10% $Na_2SiO_3$). The research carried out is on the compressive strength, water absorption, ultrasonic pulse velocity (UPV) and X-ray diffraction (XRD). The compressive strength decreased as the contents of KA increase. One of the major reason for this is the low reactivity of KA compared with other raw materials used as precursors such as GGBFS or FA. The presence of remaining KA indicates that the initially used quantity has not fully reacted during hydration. Moreover, the results have indicated that increased of KA contents decreased UPV under all experimental conditions. The drying shrinkage and water absorption increased as the content of KA increase. Test result clearly showed that the strength development of multi-component blended cement were significantly dependent on the content of KA and GGBFS.

Performance Evaluation of Cement Composite Using Multi-Component Binder for Artificial Reef Produced by 3D Printer (인공어초 3D 프린팅 제작을 위한 다성분계 결합재 기반 시멘트 복합체의 성능 평가)

  • Seo, Ji-Seok;Kim, Hyo-Jung;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.139-147
    • /
    • 2022
  • In this study, we designed a high-strength, low-alkali type cement composite for artificial reef by mixing various binders and evaluated whether it is possible to manufacture it with an ME method 3D printer. As a result of the tests, it is found that it is important to control the water-binder ratio, the silica sand-binder ratio, and the type of silica sand in order to control the fluidity of the cement composites to enable 3D printing. The surface quality of 3D printer output can be achieved by adjusting the amount of viscosity agent added while obtaining printable fluidity. In the cement composites mixing proportion using the alpha-type hemihydrate gypsum, a setting control agent needs to be used to control the quick setting effect. It is also necessary to derive the time to maintain the fluidity, and to apply it when printing. To obtain the required strength, the mix proportion needs to be modified while satisfying the fluidity level of 3D-printable cement composites. In the present study, 3D-printable mix proportions were designed by the use of multi-component binders including alpha-type hemihydrate gypsum a for low-alkali type artificial reefs, and the printability was confirmed. A further study needs to be performed to quantitatively evaluate the alkali reduction effect.

Comparative Experimental Study on Structural Behavior of Multi-component Self-Compacting Concrete (다성분계 고유동 콘크리트의 장${\cdot}$단기거동 비교 분석)

  • Noh Jea Myoung;Kwon Ki Joo;Nah Hwan Seon;Joung Won Seoup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.735-738
    • /
    • 2004
  • In this study, it was founded to make the optimal mixture for producing concrete which is self-compacting, yet, and generates low heat of hydration by using fly ash, blast furnace slags and limestone powders as binders in addition to cement while using super-plasticizers and viscosity agents as admixture agents. The structural behaviors of the concrete produced with the selected mixture were compared with those of the concrete currently using for construction of nuclear power plants. The study shows that the blended high fluidity concrete including limestone is better in workability and durability than the concrete currently in use for nuclear power plants.

  • PDF

Practical Experimental Study on Multi-component Self-Compacting Concrete (다성분계 고유동 콘크리트의 현장적용성 연구)

  • Noh Jea Myoung;Kwon Ki Joo;Nah Hwan Seon;Joung Won Seoup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.739-742
    • /
    • 2004
  • In this study, it was founded to make the optimal mixture for producing concrete which is self-compacting, yet, and generates low heat of hydration by using flyash, blast furnace slags and limestone powders as binders in addition to cement while using super-plasticizers and viscosity agents as admixture agents. The structural behaviors of the concrete produced with the selected mixture were compared with those of the concrete currently using for construction of nuclear power plants. The study shows that the blended high fluidity concrete including limestone is better in workability and durability than the concrete currently in use for nuclear power plants.

  • PDF

A Study on the Fabrication of Multi-Walled Nanotubes (MWCNT) Based Thin Film and Chemical Sensor Operation Characteristics (Multi-Walled Carbon Nanotubes (MWCNT) 인쇄박막의 제작과 화학센서 동작 특성에 관한 연구)

  • Noh, Jae Ha;Choi, Junseck;Ko, Dongwan;Seo, Joonyoung;Lee, Sangtae;Jung, Jung-Yeul;Chang, Jiho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.181-185
    • /
    • 2020
  • Hazardous and noxious substance (HNS) detection sensors were fabricated using multi-walled carbon nanotubes (MWCNTs) and various binder materials for ion batteries. To obtain uniformly printed films, the printing precision according to the substrate cleaning method was monitored, and the printing paste mixing ratio was investigated. Binders were prepared using styrene butadiene rubber + carboxymethyl cellulose (SBR+CMC), polyvinylidene fluoride + n-methyl-2-pyrrolidene (PVDF+NMP), and mixed with MWCNTs. The surface morphology of the printed films was examined using an optical microscope and a scanning electron microscope, and their electrical properties are investigated using an I-V sourcemeter. Finally, sensing properties of MWCNT printed films were measured according to changes in the concentration of the chemical under the various applied voltages. In conclusion, the MWCNT printed films made of (SBR+CMC) were found to be feasible for application to the detection of hazardous and noxious chemicals spilled in seawater.