• Title/Summary/Keyword: Multi-band

Search Result 1,283, Processing Time 0.025 seconds

MIMO Antenna Design and Beam Pattern Verification for W-band Autonomous Driving Radar (W대역 자율주행 레이다용 MIMO 안테나 설계 및 빔 패턴 검증 방법)

  • Changhyun Lee;Junhyeok Choi;Milim Lee;Shinmyong Park;Seungyeol Baek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.123-129
    • /
    • 2023
  • MIMO antenna is a field in which various researches have been actively conducted for a long time, and its design concept is universally well known. However, Unlike conventional MIMO antennas, MIMO antennas for autonomous driving radars, which have recently been attracting attention, are designed in W-band which is a millimeter wave band, and must also meet novel design conditions to satisfy the performance of autonomous driving radars. Therefore, a novel and different approach is required for the design and beam pattern verification of the MIMO antenna for autonomous driving radar. In this paper, a MIMO antenna is designed and the design process to satisfy the conditions of a W-band autonomous driving radar is introduced, and proposes a beam pattern verification method for a W-band MIMO antenna mounted on an autonomous driving radar system.

Multi-band directional antenna for satellite communications (위성 통신용 다대역 안테나)

  • Cheong, Chi-Hyun;Jeong, Hye-Mi;Kim, Kun-Woo;Bae, Ki-Hyoung;Tae, Hyun-Sik;Evtyushkin, Gennadiy
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1223-1231
    • /
    • 2010
  • The design is presented for a SATCOM antenna capable of simultaneous multi-band (X/Ku/Ka-Band) communications without replacement of feed horns or change of other parts in the application as a ground satellite terminal for large data transfer. The antenna is the offset configuration and consists of a dual-band(X/Ka-band) feed horn, a single-band(Ku-band) feed horn, a frequency selective surface(FSS) sub-reflector and a parabolic main-reflector. The antenna has a main reflector defining a prime focus and a frequency selective surface sub-reflector defining an image focus. A dual-band feed and a single-band feed are provided at each of the prime focus and image focus. The antenna is designed using 3D EM simulator and the gains measured in X/Ku/Ka-band of the complete antenna assembly is more than 31.6dBi, 36.8dBi, 40.8dBi, and the cross polarization is 21.7dB, 26.6dB, 25.2dB, respectively.

An Analytical Approach for Design of Nth-band FIR Digital Filters with Equi-Ripple Passband

  • Moon, Dong-Wook;Kim, Lark-Kyo;Lim, Cheng-Chew
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.423-428
    • /
    • 2009
  • In FIR (Finite Impulse Response) filter applications, Nth-band FIR digital filters are known to be important due to their reduced computational requirements. The conventional methods for designing FIR filters use iterative approaches such as the well-known Parks-McClellan algorithm. The Parks-McClellan algorithm is also used to design Nth-band FIR digital filters after Mintzer's research. However, a disadvantage of the Parks-McClellan algorithm is that it needs a large amount of design time. This paper describes a direct design method for Nth-band FIR Filters using Chebyshev polynomials, which provides a reduced design time over indirect methods such as the Parks-McClellan algorithm. The response of the resulting filter is equi-ripple in passband. Our proposed method produces a passband response that is equi-ripple to within a minuscule error, comparable to that of Mintzer's design method which uses the Parks-McClellan algorithm.

Design Method of a Dual Band Balun (듀얼 밴드 발룬 설계)

  • Sung, Jung-Hyun;Song, Young-joo;Jeong, Yong-Woo;park, Hyung-Sik;Ahn, Dal
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.165-168
    • /
    • 2001
  • This Paper presents the design method and performance characteristics of a dual band balun. The design method for dual balun is based on the lumped element eqiuvalent circuit of quater-wave transformaer. By employing the proposed configuration and the derived formulas, dual band balun are designed and simulated and manufactured. The proposed design method and equivalent circuit can make it easy to adapt to designing of ceramic multi-layer chip type dual band balun. The dual band will find applications in wireless communication circuits.

  • PDF

Design of a Size-reduced RFID Dual-UHF-Band Reader Antenna (RFID 이중 UHF 대역 인식 시스템용 안테나 소형화 설계)

  • Kahng, Sungtek;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1719-1724
    • /
    • 2013
  • In this paper, a size-reduction technique is presented for the RFID reader antenna working at two UHF bands. To tackle the problem of size increase in multi-band applications, two resonance paths are made to occur in one geometry with a single feed. While one resonance path is combined with the other, the entire geometry is determined to guarantee the resonance at the target frequencies through the dual-band input impedance matching. The antenna performance is predicted by the full-wave simulation, and the design method is verified by observing the good agreement between the simulated and measured results. At the two frequencies, the satisfactory return loss as well as the antenna efficiency and peak gain of the far-field pattern is obtained.

Mode Identification in the Design of Wideband Cylindrical Monopole Antenna

  • Chun, Joong-Chang;Kim, Sang-Youl;Jeung, Deuk-Soo
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.263-267
    • /
    • 2009
  • Cylindrical monopole antenna is one of most promising candidates for multi-band applications such as PCS, WLAN, DMB, and UWB wireless services. In this research, we demonstrate that there exist two types of current distributions according to the exciting frequency in a double band cylindrical monopole antenna, in which double resonance is achieved by adjusting the coupling structure of the antenna base. The operating modes of current distributions are identified from CST software simulations, the standing wave mode in a lower band and the traveling wave mode in a higher band. Also it is noticed that the mode behavior is quite similar to a helical antenna, a standing-wave (resonance) mode and a traveling-wave (non-resonance) mode according to the electrical dimensions of antenna. The effective ranges for operating modes and design formulas of the double band antenna are derived from simulation and measured results.

A Design Method for Third-Band FIR Filters of Equi-Ripple Passband (균일 리플 통과대역 응답을 갖는 1/3 밴드 FIR 필터의 설계)

  • Moon Dong-Wook;Kim Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.570-576
    • /
    • 2005
  • In FIR (Finite Impulse Response) filter applications, Nth-band FIR digital filters are known to be important due to their reduced computational requirements. The conventional methods for designing FIR filters use iterative approaches such as the well-known Parks-Mcclellan algorithm. the Parks-Mcclellan algorithm is also used to design Nth-band FIR digital filters. But a disadvantage of the Parks-McClellan algorithm Is that it needs a good amount of design time. This paper describes a direct design method for third-band FIR Filters using Chebyshev polynomial, which provide a reduction in design time over indirect methods such as the Parks-McClellan algorithm. The response of the resulting filter is equi-ripple in passband. The proposed method of design produces a passband response that is equi-ripple to within a minuscule error, compare to that of the Parks-McClellan algorithm.

Development of suspended solid concentration measurement technique based on multi-spectral satellite imagery in Nakdong River using machine learning model (기계학습모형을 이용한 다분광 위성 영상 기반 낙동강 부유 물질 농도 계측 기법 개발)

  • Kwon, Siyoon;Seo, Il Won;Beak, Donghae
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.121-133
    • /
    • 2021
  • Suspended Solids (SS) generated in rivers are mainly introduced from non-point pollutants or appear naturally in the water body, and are an important water quality factor that may cause long-term water pollution by being deposited. However, the conventional method of measuring the concentration of suspended solids is labor-intensive, and it is difficult to obtain a vast amount of data via point measurement. Therefore, in this study, a model for measuring the concentration of suspended solids based on remote sensing in the Nakdong River was developed using Sentinel-2 data that provides high-resolution multi-spectral satellite images. The proposed model considers the spectral bands and band ratios of various wavelength bands using a machine learning model, Support Vector Regression (SVR), to overcome the limitation of the existing remote sensing-based regression equations. The optimal combination of variables was derived using the Recursive Feature Elimination (RFE) and weight coefficients for each variable of SVR. The results show that the 705nm band belonging to the red-edge wavelength band was estimated as the most important spectral band, and the proposed SVR model produced the most accurate measurement compared with the previous regression equations. By using the RFE, the SVR model developed in this study reduces the variable dependence compared to the existing regression equations based on the single spectral band or band ratio and provides more accurate prediction of spatial distribution of suspended solids concentration.

Development of Adaptive Feedback Cancellation Algorithm for Multi-channel Digital Hearing Aids (다채널 디지털 보청기를 위한 적응 궤환 제거 알고리즘 개발)

  • 이상민;김상완;권세윤;박영철;김인영;김선일
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.315-321
    • /
    • 2004
  • In this study, we proposed an adaptive feedback cancellation algorithm for multi-band digital healing aids. The adaptive feedback canceller (AFC) is composed of an adaptive notch filter (ANF) for feedback detection and an NLMS (normalized least mean square) adaptive filter for feedback cancellation. The proposed feedback cancellation algorithm is combined with a multi-band hearing aid algorithm which employs the MDCT (modified discrete cosine transform) filter bank for the frequency-dependent compensation of hearing losses. The proposed algorithm together with the MDCT-based multi-channel hearing aid algorithm has been evaluated via computer simulations and it has also been implemented on a commercialized DSP board for real-time verifications.

Optimization of μc-SiGe:H Layer for a Bottom Cell Application

  • Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.322.1-322.1
    • /
    • 2014
  • Many research groups have studied tandem or multi-junction cells to overcome this low efficiency and degradation. In multi-junction cells, band-gap engineering of each absorb layer is needed to absorb the light at various wavelengths efficiently. Various absorption layers can be formed using multi-junctions, such as hydrogenated amorphous silicon carbide (a-SiC:H), amorphous silicon germanium (a-SiGe:H) and microcrystalline silicon (${\mu}c$-Si:H), etc. Among them, ${\mu}c$-Si:H is the bottom absorber material because it has a low band-gap and does not exhibit light-induced degradation like amorphous silicon. Nevertheless, ${\mu}c$-Si:H requires a much thicker material (>2 mm) to absorb sufficient light due to its smaller light absorption coefficient, highlighting the need for a high growth rate for productivity. ${\mu}c$-SiGe:H has a much higher absorption coefficient than ${\mu}c$-Si:H at the low energy wavelength, meaning that the thickness of the absorption layer can be decreased to less than half that of ${\mu}c$-Si:H. ${\mu}c$-SiGe:H films were prepared using 40 MHz very high frequency PECVD method at 1 Torr. SiH4 and GeH4 were used as a reactive gas and H2 was used as a dilution gas. In this study, the ${\mu}c$-SiGe:H layer for triple solar cells applications was performed to optimize the film properties.

  • PDF