The organizations in the competitive business environment are under pressure of handling internal management processes as well as external supply chain issues. In addition, the paradigm of supply chain management (SCM) has been shifted from static to dynamic problems. For the efficient SCM, organizations should be a RTE (Real Time Enterprises) that views entire supply chains as a single entity. In this paper, the agent system that makes RTE and dynamic supply chains possible is developed. Then, the developed agent system is verified in the TAC SCM(Trading Agent Competition Supply Chain Management) experimental environment and a dashboard is also developed for monitoring management activities of supply chains. The contributions of this paper are as followings. First, unlike the previous agent systems, the suggested agent system in this paper provides autonomy and scalability using SOA. Second, this suggested model for dynamic environment can be applied for the development of software supporting a SCM.
A microgrid (MG) with integrated renewable energy resources can benefit both utility companies and customers. As a result, they are attracting a great deal of attention. The control of a MG is very important for the stable operation of a MG. The droop-control method is popular since it avoids circulating currents among the converters without using any critical communication between them. Traditional droop control methods have the drawback of an inherent trade-off between power sharing and voltage and frequency regulation. An adaptive droop control method is proposed, which can operate in both the island mode and the grid-connected mode. It can also ensure smooth switching between these two modes. Furthermore, the voltage and frequency of a MG can be restored by using the proposed droop controller. Meanwhile, the active power can be dispatched appropriately in both operating modes based on the capacity or running cost of the Distributed Generators (DGs). The global information (such as the average voltage and output active power of the MG and so on) required by the proposed droop control method to restore the voltage and frequency deviations can be acquired distributedly based on the Multi Agent System (MAS). Simulation studies in PSCAD demonstrate the effectiveness of the proposed control method.
웹과 같은 분산 정보 검색 환경에서 문서들은 많은 문서 데이터베이스들에 자연스럽게 분할되어서 존재한다. 그러므로 이러한 문서들의 효율적인 검색을 위해서는 먼저 질의에 관련되는 문서들을 제공할 것으로 판단되는 문서 데이터베이스를 찾아내고 다음으로 그 문서 데이터베이스에 질의를 줌으로써 분산 정보 검색을 수행해야 한다. 본 논문에서는 이러한 분산 정보 검색을 위한 신경망 에이전트를 소개하고, 확장성을 가지게 하기 위하여 신경망 에이전트들이 계층적으로 구성된 다중신경망 에이전트 시스템을 제안한다. 신경망 에이전트들의 계층적 구성은 정보 검색 성능을 저하시키지 않으면서도 각 신경망 에이전트의 학습을 위한 전체 훈련 비용을 허용할 만한 범위 내에서 유지시켜 주므로 대규모 문서 데이터베이스 환경에서의 분산 정보 검색에도 신경망 에이전트를 적용할 수 있게 해준다. 제안된 신경망 에이전트를 단일 에이전트와 계층적 다중 에이전트 시스템으로 실현 환경에서 구현하여 각각의 정보 검색 성능을 기존의 통계적 분산 정보 검색 기법을 사용했을 때와 비교함으로써 신경망 에이전트의 유용성을 예증한다.
In this study, we will employ a multi-agent for the search and extraction of data in a distributed environment. We will use an Integrator Agent in the proposed model on the Hierarchical Clustering and Association Rule Discovery(HCARD). The HCARD will address the inadequacy of other data mining tools in processing performance and efficiency when use for knowledge discovery. The Integrator Agent was developed based on CORBA architecture for search and extraction of data from heterogeneous servers in the distributed environment. Our experiment shows that the HCARD generated essential association rules which can be practically explained for decision making purposes. Shorter processing time had been noted in computing for clusters using the HCARD and implying ideal processing period than computing the rules without HCARD.
효율적인 자원공유 및 동적인 시스템구성을 위한 지능형 분산 접근방식에서 주로 멀티에이전트 시스템을 사용한다. 또한 객체중복은 고장허용시스템을 구축하여 시스템에 예기치 않은 결함의 문제를 해결하기 위해 흔히 사용된다. 본 논문은 동적인 객체그룹관리에 기반한 지능형 멀티에이전트 분산플랫폼을 제시하고, 제안한 filtered k-means (Fk-means)를 기반으로 하여 객체검색기법을 제시한다. 객체 결함의 경우에, 대체 객체를 검색하여 클라이언트에게 적절한 객체를 투명하게 재 연결 시켜주기 위해 Fk-means를 사용한다. 검색방법을 효율적으로 수행하고, 그룹 내의 적절한 객체를 포함시키기 위해 Fk-means의 여과 범위를 설정한다. 시뮬레이션 결과 제안한 기법이 분산객체그룹에 대해 빠르고 정확한 검색을 나타내었다.
본 논문에서는 에이전트 지식 기반 화상회의 시스템의 유연성(flexibility)을 개선하기 위해서 기존의 서비스 조정 부분을 새롭게 설계한 전략적 지식 에이전트 아키텍처(Strategic-INTER Knowledge Architecture)를 제안한다. 제안한 아키텍처는 서비스 품질에 관한 문제에 있어서 발생한 문제의 성질이나 문제해결의 진행상황을 고려하면서 해결전략을 동적으로 변환하여 유연성 있게 해결한다 여기에서 유연성이란 시스템 내부에서 발생한 변동의 대응 및 이용자가 사용하기 편리한 서비스 제공 능력을 말한다. 한편, 제안 아키텍처를 화상회의 시스템에 적용한다. 본 아키텍처 적용에 의해서 화상회의 시스템의 에이전트 간 협조가 효과적으로 실행되었으며, 이전의 화상회의 시스템에 비해서 제약조건이 강화 된 경우에도 시스템의 유연한 대응이 가능하게 되었음을 제시한다.
웹 기반하에서 사용자의 질의에 대한 효율적인 검색결과를 제공하기 위하여 다양한 검색 알고리즘들이 개발되어 왔으며, 이러한 알고리즘들의 대부분은 사용자의 선호도나 편의성을 고려하였다. 그러나 지금까지 개발된 검색 알고리즘들은 일반적으로 웹이라는 수평의 비계층적인 웹 환경에서 개발된 것으로서 기업의 전사적 네트워크와 같이 계층적이고 기능적으로 복잡하게 구성되어 있는 웹 기반 환경에서는 적용하기가 힘든 실정이다. 본 논문에서는 이러한 특수한 웹 기반 환경하에서 사용자에게 효율적으로 마이닝 결과를 제공할 수 있는 멀티-에이전트 기반의 웹 마이닝 시스템을 제안한다. 이를 위해 우리는 계층적 웹 기반 환경이라는 네트워크 모델을 제시하며, 제시된 웹 환경에서 적용할 수 있는 4개의 협력 에이전트와 14개의 프로세스 모듈을 가진 멀티-에이전트 기반의 웹 마이닝 시스템을 설계한다. 그리고 각 에이전트에 대한 세부기능을 계층적 환경을 고려하여 모듈별로 설명하며 특히, 새로운 머징 에이전트와 개선된 랭킹 알고리즘을 그래프 이론을 적용하여 제안한다.
멀티-에이전트 시스템에서 에이전트는 다른 에이전트와 협상하기 위하여 공동의 에이전트 통신 언어를 사용하여야 하고 일치에 이르도록 설계된 협상 프로토콜에 의해 행동하여야 한다. 따라서 에이전트는 위의 요구 사항들을 수용할 수 있는 적당한 아키텍쳐를 가져야 한다. 이 논문에서 우리는 유익한 에이전트 통신 언어를 정의하고, 다른 에이전트 통신 언어들 (가령, FIPA(Foundation for Intelligent Physical Agents) 에이전트 통신 언어와 KQML(Knowledge Query Manipulation Language))과 여기서 소개한 에이전트 통신 언어를 비교한다. 특히 여기서는 에이전트를 지식베이스와 협상 라이브러리를 가진 논리 프로그램으로 표현한다. 마지막으로 협상 라이브러리 안에 있는 계획자(planner)가 어떻게 행위들의 계획을 제공하고, 어떻게 에이전트의 지식베이스를 갱신하는가를 보인다.
기존의 국방 M&S 시스템에서의 에이전트는 계급과 역할에 따른 계층적인 모습을 갖추고 있지만, 상하위 에이전트는 동일한 속성을 보유함에 따라 서로 구별되는 특징이 없고, 에이전트의 의사결정 수준은 스크립트 기반 또는 유한 상태 기계 기반으로서 주변 환경의 변화에 기계적으로 반응하는 낮은 수준에 머무르고 있다. 이러한 기존 에이전트의 문제를 극복하기 위해서 본 논문에서는 HEAP (Hierarchical Encapsulation and Abstraction Principle) 기반의 지능 에이전트를 제안한다. HEAP 기반의 지능 에이전트는 엔진베이스 모델링 방법을 사용하여 엔진모델과 지식베이스 모델을 분리시킴으로써 모델링이 용이하고 시스템의 모듈화와 추상화를 보다 유연하게 할 수 있다는 장점이 있다. 본 논문에서는 이를 함정전투 시뮬레이션에 적용하여 타당성을 검증하고자 한다.
The robot soccer simulation game is a dynamic multi-agent environment. In this paper we suggest a new reinforcement learning approach to each agent´s dynamic positioning in such dynamic environment. Reinforcement learning is the machine learning in which an agent learns from indirect, delayed reward an optimal policy to choose sequences of actions that produce the greatest cumulative reward. Therefore the reinforcement learning is different from supervised learning in the sense that there is no presentation of input-output pairs as training examples. Furthermore, model-free reinforcement learning algorithms like Q-learning do not require defining or learning any models of the surrounding environment. Nevertheless ...
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.