HE]-Jo]HE. A28 RS- 95 =a)H2l oo|HE.
T4 dojol gt A7 (D

Research on a Logical Agent Communication Language for Multi-Agent
Systems Negotiation (I)

ol @ A 3@
Myung-Jin Lee Hyun-kwan Han

2 o

HE|-A O] HE AlAE A ofo]HEE TE do|HES F4kelr] Hste] F59 dolHE §Al AoE AHg-sto} st
U)o o|lZ=E HAY BN ZZEF o) BEsor Tt Wl ojo)HEE o o ARES £EE F e
A oEAE JlRof B}, o] RN $EE F9F Jo)HE EA dolF HYsla, TE do|HE T4l o5
(7}3, FPAFounddtion for Inteligent Physical Agents) dlolRE ZA o9k KQMLKnowledge Query Manipulation Language)) <
71 A7) oelAE B4l doiE vludth 53] d7|Ne do|dES AAuejzel 4 solRegE /R =g =
Z2aPos TG viALoz §4 gelada ol e AdAHplomen)7t o1E A AAE ALS AT, oGA
Aol HES] X AHlo|~F HilshertE Blth

Abstract

Agents in Multi-Agent Systems (MAS) should make use of a common Agent Communication Language (ACL) in order fo
negofiate with others, and conform to negotiation profocols thatare designed fo reach agreements. Therefore, agents must have
suifable orchitectures that could cover obove reguirements. In this paper, we define an instructive ACL and compare i with other
ACLs such os Foundation for Infeligent Physical Agents (FPA) ACL and Knowledge Query Manipulation Language(KQMWL). In
particular, we represent agents as logic programs with knowledge base ond negotiation fibrary. Finally, we show how the planner,
which is in the negofiation library, provides the plan of actions and updates agent’s knowledge base.

= Keyword : Logic Programming, Logic Agent, Agent Communication Language, Negotiction.

1. Introduction

The main objective of an ACL is to model a
suitable framework that allows heterogeneous agents
to interact and to communicate with meaningful
statements that convey information about their
environments or knowledge[3]. A good ACL should
be declarative, syntactically simple, and readable by

* A 3] 4 ol IT Master3t# 2l
myjleekor@korea.com, hanhyoun@tpic.ac kr

= A3 A AR A AFEARAE A
hanhyoun @tpic.ac.kr

[2006/06/01 31 - 2006/06/21 A4} - 2006/10/09 AIA}SER]

people. It should be concise, yet easy to parse and
to generate[4]. To transmit a statement of the
language to another agent, the statement must be
passed through the bit stream of the underlying
transport mechanism. Thus, the language should be
linear or should be easily translated into a linear
form. Finally, because a communication language
will be integrated into a wide variety of systems,
its syntax should be extensible.

Negotiation plays a central role in multi-agent
applications. In MAS, agents interact in order to
exchange knowledge, when they are not enough to

gk olEfull HEEE (8

r

13)

115

achieve their goals. In domains such as e-commerce,
when it is natural to assume that agents are
self-interested, it is most likely that they need to
negotiate in order to obtain required information or
resources. The protocol used for negotiation has
tobe propetly designed in order to ensure that each
party will have a positive payoff out of the
negotiation process[13]. The negotiation protocol
determines the flow of messages between the
negotiating parties and is necessarily public and
open. The negotiation strategy, on the other hand, is
the way in which a given party acts within those
rules in an effort to get the best outcome of the
negotiation. For example, when and what to
concede, and when to hold firm. Therefore, the
negotiation strategy of each participant is necessarily
private.

In this paper, we consider the following three
modalities: Bfor beliefs used to represent agent’s
mental attitudes to the state of the environment,
Dfor desires used to represent motivations of the
agent, and I for intentions used to represent goals
of the agent. We assume a multi-agent environment
that exchanges the resources to achieve agents’
goals. We represent agent’s knowledge as declarative
logic program, propose a simple ACL for
negotiating with resource-bounded agents, compare
our ACL with other ACLs such as FIPA ACL[5]
and KQML[8], and compare our ACL with SQL
and Prolog. Finally, we show how agent’s planner
provides the plan of actions and how the agent
updates its own knowledge base.

2. ACL for Negotiation

The actual exchange of messages is driven by
the participating agents’ own needs, goals, or mental
attitudes. Assumed agents are negotiating on the

allocation of deficient resources, agents require the
allocation of deficient resources to achieve their
goals. In this case, we can simply define an ACL
for resource-bounded agents as follows[9]:

ask iflal, a2, m) inform(al, a2, m) request(al, a2, g, r)

reject(al, a2, g, r)y give(al, a2,)y alternative(al, a2, g, [subgoals])

achieved_goal(al, a2)

where al and a2 are agent’s identifiers
respectively, m is mental attitudes of the agent, g
and g are agent’s goals, r is resource, and subgoals
is another plan for achieving the goal.

We now examine the relationships between our
communicative acts, the KQML, and FIPA ACL. In
the case of request act, the KQML has an achieve
performative similar to request message. For
example, agent gl sends the following performative
to agent a2, requesting that a2 set a new value for
the motor buick of park_avenue 2000

(achieve
:sender al
‘receiver a2
:language Prolog
‘content "buick(park_avenue _2000)")

On the other hand, we consider a FIPA ACL
request act that agent al requests a2 to give

resource 7

(request
:Sender al
‘receiver a2
:language Prolog
:content "give(r)")

Our act request(al, a2, g, r) means that agent al
requests deficient resource r from agent a2 to

116

2007. 2

achieve its goal g. However, there is an important
difference between above KQML achieve, FIPA
ACL request, and our request(al, a2, g, r). The
KQML agent a2 does not know the reason why al
sets the new value and the FIPA agent a2 does not
know the reason why al requests resource r, while
our agent a2 knows the reason why al requests
resource r, i.e., because of the goal g. This fact
helps an agent to reason about others’ mental
attitudes so that the agent may plan its goal more
effectively. Because this information corresponds to
observe in the observe-think-act agent cycle of
Kowalski and Sadri[7], where changes in the
environment (including communications between
agents) can be observed as inputs, it could be used
in Abductive Logic Programming (ALP) which
performs the abductive/hypothetical reasoning about
other agents{6, 13].

We also examine the relationships among our
ACL, SQL, and Prolog. Mental attitude m could be
represented as follows: B(p), D(p), or I(p) where p
is an atomic sentence. The use of inform for
supplying new information to another agent is
related to the data manipulation commands of SQL
and Prolog. Assumed that the SQL database has
belief, desire, and intention tables, called b_table,
d_table, and i table, respectively, SQL INSERT of
a new row <p> into the belief table or Prolog

assert(p) corresponds to sending an inform(al, a2,

B(p)) message. Sending inform(al, a2, B(p)) with
the negated sentence p corresponds to SQL
DELETE of the respective row or Prolog retract.
Table 1 shows these relationships among our ACL,
SQL, and Prolog.

3. An Agent Architecture for
Negotiation

Roughly speaking, mental attitudes of an agent,
which represent abstract characteristics of the agent,
can be described as follows: a set of beliefs about
the world, a set of goals that the agent is currently
trying to achieve, a library of plans describing how
to achieve goals and how to react to changing in
beliefs, and an intention structure describing how
the agent is currently achieving its goals and
reacting to changing in beliefs[10]. In general, an
agent has a variety of knowledge to achieve its
goals, to plan some tasks, and to communicate with
other agents. For example, agents arc required to
possess knowledge that can be represented as a set
of sentences. These sentences describe knowledge
about their beliefs or capabilities, other interactive
agents, how to communicate with others, and a
specific application domain. Also, agents should
have the capability of dealing with multi-interaction
and communicating with others distributed by a

network.

(Table 1) The relationships among our ACL, SQL, and Prolog

Our ACL SQL Prolog
inform(al, a2, B(p)) INSERT INTO b _table VALUES p assert(p).
inform(al, a2, B(p)) DELETE FROM b table WHERE x = p retract(p).

SELECT x FROM b _table
k-iflal - 2-p.
ask-iflal, a2, B(p)) WHERE x = p 4
ask-iflal, a2, B(p)) na. -not p.

117

In order to design such an agent, we consider a
cooperative agent architecture containing the
following two major components(<Fig. 1>):
knowledge base and negotiation library including
planner, monitor, and communicator. The knowledge
base is a set of logical sentences, which includes
knowledge about the agent’s capabilities and other
agents’, and rules for problem decomposition. The
factors in the knowledge base are represented by
predicates, which mean mental attitudes of the
agent. On the other hand, the negotiation library is
responsible for deciding how to solve each task
(planner), supervising the execution of tasks
(monitor), and handling incoming and outgoing
blackboard

systems, the communicator sends messages to other

messages (communicator). Unlike

agents using the TCP/IP socket and redirects the
received messages.

World

Knowledge Base Negotiation Library

Beliefs

Desires

Intentions

(Fig. 1) A cooperative agent architecture

Negotiating agents share knowledge about actions.
The planner provides not only a sequential plan of
actions but also a list of deficient resources needed
to achieve goals by approaching to the set of
beliefs. On the other hand, when an agent receives
an alternative/planwhich could achieve its goal, the

planner chooses the lower cost plan comparing the

original plan with the new plan. To do this, the
planner uses the cost function, which maps the
domain of possible plans to the number of deficient
resources. The deficient resources are those the
agent cannot acquire in its world.

When the planner receives inform(which tells
truth/falsity of mental attitudes of other agents), give
(which conveys resources), or achieved goal(which
tells the achievement of the goal) from other agents,
it properly modifies its own mental
attitudesassertion or retraction. For example, when
b(have(a3, hanger)) is in al’s knowledge base, once
al receives give(a3, al, hanger) from a3 after al
requests hanger from a3 to achieve its own goal,
then al modifies its own beliefs and beliefs about
a3.

Intelligent agents are software programs that use
agent communication protocols to exchange
information and to achieve theirconflicting goals and
resources allocation, The interaction protocols for
intelligent agents are agent communication rules and
based on speech-act language theory. They can be
used as negotiation protocols which specify the
messages that each agent is allowed to make. In
the real agents’ communication messages, we apply
a variant of KQML performatives and FIPA ACL
acts to express the agent illocutionary forces.

Negotiation protocols could cover the permissible
types of participants e.g., the negotiators and any
relevant third parties, the negotiation states e.g,
accepting requests or negotiation closed, the events
which cause negotiation states to change e.g., no
more requests or request accepted, and the valid
actions of the participants in particular states e.g.,
which messages can be sent by whom, to whom, at
what stage.

The process of negotiation starts when an agent
generates a requestmessage. Other agents then either

118

2007. 2

accept i, reject it, or make a counter-request.
Following this, the originalagent then either sends
clarifying information that may solve any problems,
makes a new request, rejects the counter-request, or
indicatesits acceptance of the counter-request. This
process continues until all the agents involved agree

on a request or they cannot reach an agreement.

4. Implementation
4.1 Environments

We show the possibility of application applying
our ACL to a

resource-bounded agents. The implementation is

negotiation system of

performed using InterProlog 2.0.1, which supports
Java 2 SDK 1.4 andXSB Prolog 2.5. InterProlog is
a programming environment for XSB Prolog and
SWI Prolog. It consists of a Java application
front-end that communicates with a Prolog system
running as a subprocess, using standard console
redirection and TCP/IP sockets. It is implemented as
a set of standard Java classes and Prolog
predicates.While there are some communication
mechanisms such as stream-oriented and
message-oriented, we use buffered, message-based
communication mechanism using sockets: The
communication process exchanges messages that
have well-defined boundaries.

4.2 Axioms for Resource-bounded Agent

We follow the axiomatization of Rao as follows
12}
o goal-intention compatibility: intend() goal()
If an agent adopts as an intention then the

agent should have adopted as a goal to be

achieved.

* intentions leading to actions: intend(do()) do()

If an agent has an intention to do particular
action then the agent will do the action.

In addition to the axiomatization of Rao, we fries
to confine intentions as much as possible, taking
the action when the agent believes that it can take
the action intend(do()) can() do().

We consider the standard KD4S axiomatization
for beliefs, Modus Ponens (MP) inference rule, and

the following axioms for resource-bounded agents:

bihave(X, Z) give(X, Y, Z)) bithave(Y Z)). (4-1)
bithave(j, Z) give(X, j, Z)) bithave(j, Z)). @-2)
bithave(X, Z) give(X, Y Z)) bihave(X, Z)). (4-3)

bithave(i, Z)) bifholdon(i, Z)) request(X, i,

givefi, X, 2)) give(i, X, Z). (4-4)
bithave(i, Z)) bi(holdon(i, Z)) request(X, i,

give(i, X, 2)) give(i, X, Z) (4-5)
Ifgive(X, i, Z)) request(i X, give(X, i Z)). (4-6)

4.3 Knowledge bases of Agents

We also consider a variant of Parsons
example[11]. Agent al tries to hang a picture, a2 a
mirror, and a3 a clock. al needs a nail, a2 a
hammer, and a3 a hanger nail to achieve its goal.
Now, each planner comes to know the intention of
the agent, adopts the intention as a goal to be
achieved, and decides an appropriate plan to solve
the goal. For example, when the set of beliefs of
al is as follows,

b(have, (al, hammer)) b(have, {al, picture))

82 el Hiests| 8 15)

119

b(have, (al, screw)) b(have, (al, screwdriver))

b(have, (al, hanger nail)) b(have, (a3, hanger))

the planner of al adopts do(al, hang picture) as
a goal and decides a plan to achieve the goal using
hammer, nail, and picture. The planner of gl makes
a list of deficient resources by searching required
resources to perform the plan. In this case, the list
will be [nail]. So, al asks a2 and o3 if they have
a nailask iflal, a2, b(have(a2, nail))) and ask_iflal,
a3, b(have(a3, nail))).

On the other hand, when a2 has the following
set of beliefs, the planner of a2 decides a plan to

achieve the goal using hammet, nail, and mirror.

b(have, (a2, nail)) b(have, (a2, mirror))

b(have, (al, screw)) b(have, (al, hammer))

b{have, (al, screwdriver))

Because a2 has all resources to achieve its goal,
the list of deficient resources will be empty. During
the negotiation process, a2 comes to know another
way to hang a mirror by receiving alternative(al,
a2, hang mirror, [screw, screwdriver, mirror]). In
this case, the planner of a2 adopts the lower
resource cost plan by comparing the cost |p| of the
original plan p with the cost |p| of the new plan p
using the cost function. If we have the relation ,
the planner will adopt the new plan p. When an
agent comes to know/belief the occurrence of (4-1),
(4-2), or (4-3), the agent will properly modify its
knowledge base.

The following list shows a part of consulting
mental attitudes and negotiation mechanism for
agents:

:- compiler options([xpp_on]).
#include "socket_defs xsb.h"

% Import necessary utilities

;- import member/2 from basics.

:- import load_dyn/l from consult.

.- import socket/2, socket_bind/3, socket_listen/3,
socket_accept/3, socket_set option/3, socket_close/2,
socket recv/3, socket_send/3 from socket.

?- load_dyn(agentl).

?- reconsult(negotiation).

?- agent2.

?- agent3.

% Port on which Agentl is listening
xsb_port1(6020).

xsb_port2(6022).

xsb_messagel('You are Agent2').
xsb_message2('You are Agent3').

The following list shows a part of negotiation
mechanism for agents:
:- import member/2 from basics.
.- import socket_close/2, socket recv/3, socket send/3
from socket.
find_agent(b(have(Agent, Tool)), Agent2, Tool) :-
b(Agent2, b(have(Agent2,Tool))).
find goal(Task, Goal) :-
rule(b(can(Agent, Goal)), Subgoals),
member(Task, Subgoals).
plan(Task) -
Task.
plan{Task) :-
find_agent(Task, Receiver, Tool),
find goal(Task, Goal),
b(my_name(Sender)),
send message('request’, Sender, Receiver,
Goal, Tool),
(Sender == 'al' >
sid12(Sock12), wait_ reply(Sock12)

4.4 Negotiation Processes

120

2007. 2

When we click Start simple BDI agents
negotiation item, negotiation among agent al, agent
a2, and agent a3 starts. At first, al tries to achieve
its goal, intend(do(al, hang picture)). Thus, it tries
to solve the query, ?-solve(b(do(al, hang picture))).
This query is transferred to the monitor of al and
again passed on to the planner of ql. The planner
decomposes the query and comes to know that al
needs a nail. gl however has no knowledge about
nail so that it asks a2 and a3 if they have a nail,
ask_iflal, a2, blhave(a2, nail))) and ask ifal, a3,
b(have(a3, nail))), and then it waits for a reply
through the communicator.

On the other hand, a2 which receives an ask if
message from al checks its knowledge base,
informs al that it has a nail, nform(a2, al,
b(have(a2, nail))), and waits for a reply. Now, al
comes to know that 42 has a nail, requests a nail
from a2, request(al, a2, hang picture, nail), and
waits for a reply. This request message means that
al requests a nail from a2 to achieve its goal,
hanging a picture.

a2 which receives the request message from al
first checks the unacceptable conditions of the
resources in the message. It knows that the
resources conflict occurs so that tries to achieve its
goal, intend(do(a2, hang mirror)). It decomposes the
goal, but comes to know that it lacks a hammer to
hang a mirror on its own. It requests a hammer
from al, request(al, al, hang mirror, hammer), and
waits for a reply.

al whichreceives a counter-request wants to
know whether the resources conflict occurs.
Unfortunately, the resources satisfies an unacceptable
condition and it finds an alternative to achieving
a2’s goal and sends the alternative to a2,
alternative(al, a2, hang mirror, screwdriver, screw,

mirror), which represents that if 42 has a

screwdriver, a screw, and a mirror then a2 can
hang a mirror.

Finally, <Fig. 2> shows the state of al before
negotiation and <Fig. 3> shows the state of al
after negotiation.

%b‘ﬂes"gu{t’:e—Bpunﬂed BDI Agent |

| - [init_agent! loaded]

[CPGinglinterprolog201tagent! P dynamically loaded, cpu time us
d: 0.0200 geconds]

[negotiation loaded]

Connecied to Ageni...

Message from Agent2: You are Agentt

Connected to Agent3...

Message from Agent3: You are Agentl

{Fig. 2) The state of al before negotiation

achieved_goal(al,al,_)

h{dofal hang_pictura))

Sending message...

requestial,a2 hang_picture hail)
faiting for message..

Received message:

nive(a2 al _ nail)

hidoial hang_picture))

COMPLETED: solveib{do(al hang_picture)))
Sending message...

achieved_goal(al,aZ,__)

(Fig. 3) The state of al after negotiation
5. Evaluation and Conclusion

In the paper, we represent resource-bounded
agents as logic programs, define a simple ACL for
negotiation, and show how the negotiation planner
provides a plan of actions. Logic programs

syntactically/declaratively ~represent knowledge of

sk QIR HHEE| (8A 135)

121

agents and offer accurate semantics for
communication acts. Unlike FIPA ACL and KQML,
the agent receiving our request communication act
knows the reason why the sending agent requests
the resource. This fact will improve the reasoning
ability of the receiving agent. In particular, ALP
could perform the hypothetical reasoning using this
fact.

While the planner, which makes a plan of
STRIPS-based,

calculus-based, or event calculus-based planner, we

actions, could have situation
have the planlibrary in the negotiation library. In
the cooperative MAS examples, the planner decides
a goal of the agent, sets up an appropriate plan to
achieve the goal, and adopts the lower cost plan
using the cost function. Although this research is
performed in the restricted environment, we show
that the planner takes adequate actions in the
resource-bounded cooperative MAS.

The following issues require further investigation:
research on dynamic protocols whichcan negotiate
on the rules that will be used, research on ACLs
and planners which can be used in the more open
environments, and research on logic-based
frameworks which can negotiate in one-to-many

such as auction systems and e-commerce systems|l,
2].

References

{11 C. Bartolini and C. Preist. A Framework for
Automated Negotiation. HP Labs Technical
Report 2001-90, HP Labs Agent Research,
2001.

[2] C. Bartolini, C. Preist, and N. R. Jennings. A
Generic Software Framework for Automated
Negotiation. HP Labs Technical Report2002-2,

HP Labs Agent Research, 2002.
[3] B. Chaib-draa and F. Dignum.Trends in Agent
Communication Language.
Intelligence, 18(2), 2002.
[4] T. Finin, Y. Labrou, and J. Mayfield.
Desiderata for Agent

Computational

Communication
Languages, In Proceedings of the AAAI
Symposium on Information Gathering from
Heterogeneous Distributed Environments, 1995.

(5] Foundation for Intelligent Physical Agents (FIPA).
FIPA Communicative Act Library Specification.
http:/lwww fipa.org/specs/fipa00037/SC00037J.Atml,
2002.

[6] A. C. Kakas, R. A. Kowalski, and F. Toni.
The Role of Abduction in Logic Programming.
Handbook of Logic in Al and Logic
Programming, 5:235-324, 1998.

[77 R. A. Kowalski and F. Sadri. From Logic
Programming to Multi-Agent Systems, Awnals
of Mathematics and Artificial Intelligence,
25:391-419, 1999.

[8] Y. Labrou and T. Finin. A Proposal for a New
KQML Specification.
C5-97-03, Computer Science and Electrical
Engineering University ~ of
Maryland Baltimore County, 1997.

[9] M. J. Lee and J. S. Kim. A Logic
Programming Framework for Negotiation

Technical ~ Report

Department,

among Resource-bounded BDI Agents. In
Proceedings of the International Conference on
Intelligent Agents, Web Technologies, and
Internet Commerce, 2001,

[10] D. Morley. Semantics of BDI Agents and
Their Environment. Technical Note 74,
Australian Artificial Intelligence Institute, 1996.

[11] S. Parsons, C. Sierra, and N. R. Jennings.
Agents that Reason and Negotiate by Arguing.

Journal of Logic and Computation,

122

2007. 2

O

UEl-Of0IME AAY HAS 93 =2

=N~

r

kI

HE S4 dofoff 25t 17 ()

r

8(3):261-292, 1998.

[12] A. S. Rao and M. P. Georgeff. Intentions and

Rational Commitment. Technical Note 8,
Australian Artificial Intelligence Institute, 1993.

[13] F. Sadri, F. Toni, and P. Torroni. Logic

Agents, Dialogues and Negotiation: An
Abductive Approach. In Proceedings of the
Symposium on Information Agents for
E-Commerce, 2001.

DS N Iy Q

0] ¥ ZI(Myung-Jin Lee)

E-mail : mjleekor@korea.com

& & B (Hyun-kwan Han)

HAEOk : SE, UML, AZHE
E-mail : hanhyoun@tpic.ac.kr

1990 vl ehskn =33} (3D

1994 A Ojshl AFH T EUAD

2002 AR el AFEH T 2QEAD
20031 ~ 3] ofAlolthEtw IT Masterdta} w4

WAL : ATE AzH, AapPgAR A|2E, o] HE AJl2H

1992 AL DAY TN S

2002 oSk jshel A AR S} S
2007 FErhEha eel AFE TS b
2004~ A hFHAPHAT BFEHRALD FYnT

12 OlE{ HiEsts| 8 13)

123

