• Title/Summary/Keyword: Multi-Walled Carbon Nanotube (MWCNT)

Search Result 114, Processing Time 0.034 seconds

The Electrical Properties of Cementitious Composites with Carbon Black and MWCNT for the Development of Cement-Based Battery (시멘트기반 배터리 개발을 위한 Carbon Black 및 MWCNT 혼입 시멘트 복합체의 전기적 특성 분석)

  • Lee, Joo-Ha
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.212-213
    • /
    • 2018
  • The cementitious composites have been developed to satisfy various demands of the construction market. The conductive concrete, which is a carbon-based cementitious composite, was used for the deicing or the detecting the internal crack. The cement-based battery is a technology that applies the basic concept of the alkaline battery to these conductive concretes. The cementitious composites could have a function as batteries, through a mixing of anode and cathode, which were consist of the zinc and manganese dioxide powder. The carbon-based materials, which have a significant effect on electrical properties, could be considered as the main variable in cement-based batteries. Therefore, in this study, the effects of carbon-based materials were investigated. Two types of materials, including the Carbon black and Multi-walled carbon nanotube(MWCNT), were considered as the main variables. From the experiment results, the electrical characteristics such as resistance, voltage, and current were compared according to the age.

  • PDF

Facile Low-temperature Chemical Synthesis and Characterization of a Manganese Oxide/multi-walled Carbon Nanotube Composite for Supercapacitor Applications

  • Jang, Kihun;Lee, Sung-Won;Yu, Seongil;Salunkhe, Rahul R.;Chung, Ildoo;Choi, Sungmin;Ahn, Heejoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2974-2978
    • /
    • 2014
  • $Mn_3O_4$/multi-walled carbon nanotube (MWCNT) composites are prepared by chemically synthesizing $Mn_3O_4$ nanoparticles on a MWCNT film at room temperature. Structural and morphological characterization has been carried out using X-ray diffraction (XRD) and scanning and transmission electron microscopies (SEM and TEM). These reveal that polycrystalline $Mn_3O_4$ nanoparticles, with sizes of about 10-20 nm, aggregate to form larger nanoparticles (50-200 nm), and the $Mn_3O_4$ nanoparticles are attached inhomogeneously on MWCNTs. The electrochemical behavior of the composites is analyzed by cyclic voltammetry experiment. The $Mn_3O_4$/MWCNT composite exhibits a specific capacitance of $257Fg^{-1}$ at a scan rate of $5mVs^{-1}$, which is about 3.5 times higher than that of the pure $Mn_3O_4$. Cycle-life tests show that the specific capacitance of the $Mn_3O_4$/MWCNT composite is stable up to 1000 cycles with about 85% capacitance retention, which is better than the pure $Mn_3O_4$ electrode. The improved supercapacitive performance of the $Mn_3O_4$/MWCNT composite electrode can be attributed to the synergistic effects of the $Mn_3O_4$ nanoparticles and the MWCNTs, which arises not only from the combination of pseudocapacitance from $Mn_3O_4$ nanoparticles and electric double layer capacitance from the MWCNTs but also from the increased surface area, pore volume and conducting property of the MWCNT network.

Electrochemical Characteristics of $LiFePO_4$ with Conductivity Materials for Lithium Polymer Batteries

  • Jin, En Mei;Wang, Jiao;Zhao, Xing Guan;Park, Kyung-Hee;Gu, Hal-Bon;Park, Bok-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.132-132
    • /
    • 2009
  • Phospho-olivine $LiFePO_4$ cathode materials were prepared by hydrothermal reaction. In this study, Multi-walled carbon nanotube (MWCNT) and Carbon black was added to enhance the electrical conductivity of $LiFePO_4$. $LiFePO_4$, $LiFePO_4$-MWCNT and $LiFePO_4$-C particles were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) transmission electron microscope (TEM). $LiFePO_4/SPE/Li$, $LiFePO_4$-MWCMT/SPE/Li and $LiFePO_4$-C/SPE/Li cells were characterized electrochemically by charge/discharge experiments at a constant current density of $0.1mA\;cm^{-2}$ in a range between 2.5 and 4.3 V vs. $Li/Li^+$ and cyclic voltammetry (CV).

  • PDF

Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams

  • Lal, Achchhe;Markad, Kanif
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.501-514
    • /
    • 2018
  • The paper presents the thermo-mechanically induced non-linear response of multiwall carbon nanotube reinforced laminated composite beam (MWCNTRCB) supported by elastic foundation using higher order shear deformation theory and von-Karman non-linear kinematics. The elastic properties of MWCNT reinforced composites are evaluated using Halpin-Tsai model by considering MWCNT reinforced polymer matrix as new matrix by dispersing in it and then reinforced with E-glass fiber in an orthotropic manner. The laminated beam is supported by Pasternak elastic foundation with Winkler cubic nonlinearity. A generalized static analysis is formulated using finite element method (FEM) through principle of minimum potential energy approach.

NOx Gas Detection Characteristics of MWCNT Gas Sensor by Electrode Spacing Variation (MWCNT 가스센서의 전극 간극 변화에 따른 NOx 가스 검출 특성)

  • Kim, Hyun-Soo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.668-672
    • /
    • 2014
  • Carbon nanotubes(CNT) has chemical stability and great sensitivity characteristics. In particular, the gas sensor required characteristics such as rapid, selectivity and sensitivity sensor. Therefore, CNT are ideal materials to gas sensor. So, we fabricated the NOx gas sensors of MOS-FET type using the MWCNT (multi-walled carbon nanotube). The fabricated sensor was used to detect the NOx gas for the variation of $V_{gs}$(gate-source voltage) and electrode changed electrode spacing=30, 60, 90[${\mu}m$]. The gas sensor absorbed with the NOx gas molecules showed the decrease of resistance, and the sensitivity of sensor was increased by magnification of electrode spacing. Furthermore, when the voltage($V_{gs}$) was applied to the gas sensor, the decrease in resistance was increased. On the other hand, the sensor sensitivity for the injection of NOx gas was the highest value at the electrode spacing $90[{\mu}m]$. We also obtained the adsorption energy($U_a$) using the Arrhenius plots by the reduction of resistance due to the voltage variations. As a result, we obtained that the adsorption energy was increased with the increment of the applied voltages.

Fabrication of Fiber Gas Sensor and Analysis of NOx Gas Detection Characteristics (화이버 가스 센서 제작 및 NOx 가스 검출 특성 분석)

  • Son, Ju Hyeong;Kim, Hyun Soo;Yoon, Young Ki;Jang, Kyung Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.432-436
    • /
    • 2019
  • In this study, we produced a light, flexible, wearable gas sensor by depositing MWCNTs (Multi-walled Carbon Nanotubes) into nylon. MWCNTs are widely used as a gas sensor material due to their excellent mechanical, electrical and physical characteristics. We produced a gas sensor to detect NOx gases by depositing nylon yarn in a MWCNT solution. The MWCNT solution was made by mixing 3 mg MWCNT in 5 ml of ethanol. Nylon yarn was placed in the manufactured solution and ultrasonic waves were applied using an ultrasonicator for 3 h, resulting in MCWNT deposition. The MWCNT-deposited nylon yarn was dried at room temperature for 24 h. The MWCNT-thin-film-coated nylon yarn was masked 1 mm apart, and gold was then deposited on the masked nylon yarn to create the gas sensor. The sensor then was installed in a chamber with a controlled atmospheric environment and exposed to NOx gas. The changing signal from the sensor was amplified to analyze its gas detection characteristics.

Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)

  • Ahangarnazhad, Bita Hosseinian;Pourbaba, Masoud;Afkar, Amir
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.463-474
    • /
    • 2020
  • In this paper, the influence of adding multi-walled carbon nanotube (MWCNT) on the pull behavior of steel and GFRP bars in ultra-high-performance concrete (UHPC) was examined experimentally and numerically. For numerical analysis, 3D nonlinear finite element modeling (FEM) with the help of ABAQUS software was used. Mechanical properties of the specimens, including Young's modulus, tensile strength and compressive strength, were extracted from the experimental results of the tests performed on standard cube specimens and for different values of weight percent of MWCNTs. In order to consider more realistic assumptions, the bond between concrete and bar was simulated using adhesive surfaces and Cohesive Zone Model (CZM), whose parameters were obtained by calibrating the results of the finite element model with the experimental results of pullout tests. The accuracy of the results of the finite element model was proved with conducting the pullout experimental test which showed high accuracy of the proposed model. Then, the effect of different parameters such as the material of bar, the diameter of the bar, as well as the weight percent of MWCNT on the bond behavior of bar and UHPC were studied. The results suggest that modifying UHPC with MWCNT improves bond strength between concrete and bar. In MWCNT per 0.01 and 0.3 wt% of MWCNT, the maximum pullout strength of steel bar with a diameter of 16 mm increased by 52.5% and 58.7% compared to the control specimen (UHPC without nanoparticle). Also, this increase in GFRP bars with a diameter of 16 mm was 34.3% and 45%.

Effect of Types of Acrylic Monomers on Properties of Anti-static Waterborne Acrylic Polyurethane Dispersion (아크릴 단량체 종류 변화가 대전방지용 수분산 아크릴 폴리우레탄의 물성에 미치는 영향)

  • Huh, Woo Young;Yun, Dong Gu;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.451-458
    • /
    • 2014
  • Waterborne polyurethane dispersion (WPUD) was prepared from polycarbonate diol (PCD), isophorone diisocyanate (IPDI) and dimethylol propionic acid (DMPA) as starting materials. Then, waterborne acrylic polyurethane dispersion (AUD) was synthesized by reacting the WPUD with different types of acrylate monomers, such as methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA) and butyl acrylate (BA). Subsequently, the AUD was mixed with multi-walled carbon nanotube (MWCNT) to yield a conductive coating solution, and the mixture was coated on the polycarbonate substrate. The pencil hardness, abrasion resistance and chemical resistance of the coating films from AUD were improved than those from WPUD, while the electrical conductivity of the coating films from AUD was decreased than that of WPUD. Also, the effect of acrylate types on the properties of coating films was investigated. The AUD obtained from HEMA showed the strongest pencil hardness, while the AUD obtained from MMA exhibited the strongest abrasion resistance, chemical resistance and electrical conductivity among several types of acrylate monomers.

The effect of MWCNTs on the mechanical properties of woven Kevlar/epoxy composites

  • Taraghi, Iman;Fereidoon, Abdolhossein;Mohyeddin, Ali
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.825-834
    • /
    • 2014
  • This manuscript presents an experimental investigation on the effect of Multi-walled carbon nanotubes (MWCNTs) addition on the tensile, flexural and impact properties of woven Kevlar fabric reinforced epoxy composites. MWCNTs were dispersed in the epoxy resin by sonication technique and the samples were fabricated by hand layup laminating procedure. Scanning electron microscopy (SEM) was used to characterize the microstructure of produced samples. The effects of adding small amounts (${\leq}1%$) of MWCNT on the tensile, flexural and impact (Izod) behaviors of laminated composites were analyzed. Results revealed that MWCNTs enhanced the Young's modulus up to 20%, bending modulus up to 40%, and impact strength up to 45% in comparison with woven Kevlar fabric/epoxy composites. It was found that the maximum improvements in mechanical properties were happened for 0.5 wt.% MWCNT.

Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites

  • Fattahi, A.M.;Safaei, Babak;Qin, Zhaoye;Chu, Fulei
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.177-187
    • /
    • 2021
  • The effect of nanoparticle volume fraction on the elastic properties of a polymer-based nanocomposite was experimentally investigated and the obtained results were compared with various existing theoretical models. The nanocomposite was consisted of high density polyethylene (HDPE) as polymeric matrix and 0, 0.5, 1 and 1.5 wt.% multi walled carbon nanotubes (MWCNTs) prepared using twin screw extruder and injection molding technique. Nanocomposite samples were molded in injection apparatus according to ASTM-D638 standard. Therefore, in addition to morphological investigations of the samples, tensile tests at ambient temperature were performed on each sample and stress-strain plots, elastic moduli, Poisson's ratios, and strain energies of volume units were extracted from primary strain test results. Tensile test results demonstrated that 1 wt.% nanoparticles presented the best reinforcement behavior in HDPE-MWCNT nanocomposites. Due to the agglomeration of nanoparticles at above 1 wt.%, Young's modulus, yielding stress, fracture stress, and fracture energy were decreased and Poisson's ratio and failure strain were increased.