Electrochemical Characteristics of LiFePO₄ with Conductivity Materials for Lithium

Polymer Batteries

En Mei Jin¹, Jiao Wang¹, Xing Guan Zhao¹, Kyung-Hee Park¹, Hal-Bon Gu¹, Bok-Kee Park²

¹Chonnam National Univ., ²Howon National Univ.

Abstract: Phospho-olivine LiFePO₄ cathode materials were prepared by hydrothermal reaction. In this study, Multi-walled carbon nanotube (MWCNT) and Carbon black was added to enhance the electrical conductivity of LiFePO₄. LiFePO₄, LiFePO₄-MWCNT and LiFePO₄-C particles were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) transmission electron microscope (TEM). LiFePO₄/SPE/Li, LiFePO₄-MWCMT/ SPE/Li and LiFePO₄-C/SPE/Li cells were characterized electrochemically by charge/discharge experiments at a constant current density of 0.1mA cm⁻² in a range between 2.5 and 4.3 V vs. Li/Li⁺ and cyclic voltammetry (CV).

Key Words: LiFePO4, Multi-walled carbon nanotube, Carbon black, SPE.

1. Introduction

Olivine-type structure LiFePO₄ is the most attractive because of its high stability, low cost, high compatibility with environment. However, it is difficult to attain its full capacity because its electronic conductivity is very low, and diffusion of Li⁺ ion in the olivine structure is slow[1]. So, in this study, LiFePO₄ was prepared by hydrothermal reaction. In order to enhance the electrical conductivity of LiFePO₄, conductivit materilas as carbon black and MWCBT was added and their electrochemical properties were analyzed by means of charge/discharge experiments.

2. Experimental

LiFePO₄ was prepared by hydrothermal method at 150 °C. Addition of ascorbic acid as a reducing agent to the precursor was useful in prohibiting the conversion of Fe²⁺ to Fe³⁺ during the hydrothermal reaction and generation of α-Fe₂O₃ during the annealing process. In order to improve low electron conduction of LiFePO₄, carbon black and MWCNT was added 5wt.%. A composite electrode was prepared by mixing LiFePO₄, LiFePO₄-C or LiFePO₄-MWCNT(5wt.%) and PVdF in a weight ratio of 70:25:5. The coin-type (CR2032) cells were fabricated for the electrochemical tests.

3. Results and discussion

Cycling performance of LiFePO₄/Li, LiFePO₄-C (5 wt.%)/SPE/Li and LiFePO₄-MWCNT (5wt.%)/SPE/Li cells are shown in Fig.1(a), Fig.1(b) and Fig.1(c), respectively. As can be seen from Fig.1, the discharge capacity of LiFePO₄/SPE/Li cell is 103 mAh/g at the first cycle and 86 mAh/g after 30 cycles, respectively. The initial and 30 cycles the discharge capacity of LiFePO₄-C (5wt.%) is 128 mAh/g and 126 mAh/g, respectively and the initial discharge capacity of LiFePO₄-MWCNT (5wt.%) is 124 mAh/g, and after 30 cycles the discharge capacity is 126 mAh/g, respectively. It is demonstrated that cycling performance of LiFePO₄-MWCNT (5wt.%)/SPE/Li cell is better and the cycling stability is good than that of LiFePO₄-SPE/Li and

LiFePO₄-C/SPE/Li cell.

Fig.1. Cycling performance of (a) LiFePO₄/SPE/Li, (b) LiFePO₄-C/SPE/Li and (c)LiFePO₄-MWCNT/SPE/Li cell.

4. Conclusion

The discharge capacity of LiFePO₄/SPE/Li cell is 103 mAh/g at the first cycle and 86 mAh/g after 30 cycles, respectively. The discharge capacity of LiFePO₄-C/SPE/Li cell with 5 wt.% carbon black was 128 mAh/g at the first cycle and 126 mAh/g after 30 cycles, respectively. The discharge capacity of LiFePO₄-MWCNT/SPE/Li cell with 5 wt% MWCNT was 124 mAh/g at the first cycle and 126 mAh/g after 30 cycles, respectively. It was demonstrated that cycling performance of LiFePO₄-C (5 wt.%)/SPE/Li cells was better than that of LiFePO₄/SPE/Li cells and LiFePO₄-MWCNT (5 wt.%)/SPE/Li cell was better than that of another cells.

Acknowledgments

This research was financially supported by the Ministry of Education, Science Technology (MEST) and Korea Industrial Technology Foundation (KOTEF) through the Human Resource Training Project for Regional Innovation.

Reference

[1] H. B. Gu, B. Jin, D. K. Jun, and Z. J. Han, J. Nanosci. Nanotechnol. 7, 4037 (2007).