• Title/Summary/Keyword: Multi-Threshold CMOS

Search Result 14, Processing Time 0.022 seconds

MTCMOS Post-Mask Performance Enhancement

  • Kim, Kyo-Sun;Won, Hyo-Sig;Jeong, Kwang-Ok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.4
    • /
    • pp.263-268
    • /
    • 2004
  • In this paper, we motivate the post-mask performance enhancement technique combined with the Multi-Threshold Voltage CMOS (MTCMOS) leakage current suppression technology, and integrate the new design issues related to the MTCMOS technology into the ASIC design methodology. The issues include short-circuit current and sneak leakage current prevention. Towards validating the proposed techniques, a Personal Digital Assistant (PDA) processor has been implemented using the methodology, and a 0.18um process. The fabricated PDA processor operates at 333MHz which has been improved about 23% at no additional cost of redesign and masks, and consumes about 2uW of standby mode leakage power which could have been three orders of magnitude larger if the MTCMOS technology was not applied.

A UHF-band Passive Temperature Sensor Tag Chip Fabricated in $0.18-{\mu}m$ CMOS Process ($0.18-{\mu}m$ CMOS 공정으로 제작된 UHF 대역 수동형 온도 센서 태그 칩)

  • Pham, Duy-Dong;Hwang, Sang-Kyun;Chung, Jin-Yong;Lee, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.45-52
    • /
    • 2008
  • We investigated the design of an RF-powered, wireless temperature sensor tag chip using $0.18-{\mu}m$ CMOS technology. The transponder generates its own power supply from small incident RF signal using Schottky diodes in voltage multiplier. Ambient temperature is measured using a new low-power temperature-to-voltage converter, and an 8-bit single-slope ADC converts the measured voltage to digital data. ASK demodulator and digital control are combined to identify unique transponder (ID) sent by base station for multi-transponder applications. The measurement of the temperature sensor tag chip showed a resolution of $0.64^{\circ}C/LSB$ in the range from $20^{\circ}C$ to $100^{\circ}C$, which is suitable for environmental temperature monitoring. The chip size is $1.1{\times}0.34mm^2$, and operates at clock frequency of 100 kHz while consuming $64{\mu}W$ power. The temperature sensor required a -11 dBm RF input power, supported a conversion rate of 12.5 k-samples/sec, and a maximum error of $0.5^{\circ}C$.

Pipelined Wake-Up Scheme to Reduce Power-Line Noise of MTCMOS Megablock Shutdown for Low-Power VLSI Systems (저전력 VLSI 시스템에서 MTCMOS 블록 전원 차단 시의 전원신 잡음을 줄인 파이프라인 전원 복귀 기법)

  • 이성주;연규성;전치훈;장용주;조지연;위재경
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.10
    • /
    • pp.77-83
    • /
    • 2004
  • In low-power VLSI systems, it is effective to suppress leakage current by shutting down megablocks in idle states. Recently, multi-threshold voltage CMOS (MTCMOS) is widely accepted to shutdown power supply. However, it requires short wake-up time as operating frequency increases. This causes large current surge during wake-up process, and it often leads to system malfunction due to severe Power line noise. In this paper, a novel wake-up scheme is proposed to solve this problem. It exploits pipelined wake-up strategy in several stages that reduces maximum current on the power line and its corresponding power line noise. To evaluate its efficiency, the proposed scheme was applied to a multiplier block in the Compact Flash memory controller chip. Power line noise in shutdown and wake-up process was simulated and analyzed. From the simulation results, the proposed scheme was proven to greatly reduce the power line noise compared with conventional schemes.

Hardware Architecture of High Performance Cipher for Security of Digital Hologram (디지털 홀로그램의 보안을 위한 고성능 암호화기의 하드웨어 구조)

  • Seo, Young-Ho;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.374-387
    • /
    • 2012
  • In this paper, we implement a new hardware for finding the significant coefficients of a digital hologram and ciphering them using discrete wavelet packet transform (DWPT). Discrete wavelet transform (DWT) and packetization of subbands is used, and the adopted ciphering technique can encrypt the subbands with various robustness based on the level of the wavelet transform and the threshold of subband energy. The hologram encryption consists of two parts; the first is to process DWPT, and the second is to encrypt the coefficients. We propose a lifting based hardware architecture for fast DWPT and block ciphering system with multi-mode for the various types of encryption. The unit cell which calculates the repeated arithmetic with the same structure is proposed and then it is expanded to the lifting kernel hardware. The block ciphering system is configured with three block cipher, AES, SEED and 3DES and encrypt and decrypt data with minimal latency time(minimum 128 clocks, maximum 256 clock) in real time. The information of a digital hologram can be hided by encrypting 0.032% data of all. The implemented hardware used about 200K gates in $0.25{\mu}m$ CMOS library and was stably operated with 165MHz clock frequency in timing simulation.