• Title/Summary/Keyword: Multi-Span

Search Result 382, Processing Time 0.031 seconds

A New Approach to the Analysis of Multi-span Continuous Beams (다경간(多徑間) 연속(連續)보의 해석(解析)에 관한 새로운 방법(方法))

  • Yang, Chang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.85-95
    • /
    • 1992
  • The moment distribution method has been widely used for the past sixty years for determining the end moments of structural frames. However, the method trends to show more complexity of the procedures and approximation of the results as the degree of indeterminancy increases. The previous study proposed closed form formulas for the analysis of the continuous beams up to four spans. These formulars show simpler forms and provide perfectly rigorous solution in comparision with the moment distribution method. This study proposes closed form formulas for the analysis of multi-span continuous beams which are basically similar to the equations developed in the previous study. It is shown that these formulars may also produce more rigorous results and lead to simpler calculation processes. The proposed approach may be one of the new methods for the analysis of multi-span continuous beams or the rigid frames.

  • PDF

Comparative Study on Efficiencies of Naturally-Ventilated Multi-Span Greenhouses in Korea (다연동 온실의 자연환기효율성 비교 분석)

  • Kwon, Soon-Hong;Jung, Sung-Won;Kwon, Soon-Gu;Park, Jong-Min;Choi, Won-Sik;Kim, Jong-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.8-18
    • /
    • 2017
  • This research analyzed the ventilation effect of the multi-span greenhouse based on the types of greenhouse structure, weather conditions, and locations inside the greenhouse. To compare and analyze the ventilation effects with different types of greenhouse, the uniform environmental conditions should be selected in advance. But these factors are not controlled and require tense many precision facilities and labor forces. Thus, the CFD simulation was used for the air stream to be analyzed qualitatively and quantitatively. In addition, for the ventilation effect analysis, the TGD (Tracer Gas Decay) was used to overcome the shortcomings of the current ventilation measurement method. The calculation error of ventilation rate using TGD was low (10.5%). Thus, the TGD is very effective in calculating the ventilation efficiency. The wind direction of 90 degrees showed the best ventilation effect. The ventilation rate also decreased along the air circulation path, and the rate was the lowest around the outlet. The computed fluid method (CFD) turned out to be a power tool for simulating flow behavior in greenhouse.

Dynamic Analysis of the Multi-Span Beam on Elastic Foundation Part two : Dynamic Response for the Moving Loads (탄성지반 위에 놓여있는 다지지 보의 동적해석 제2보 : 움직이는 하중에 대한 동적응답)

  • K.J. Choi;Y.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.92-98
    • /
    • 1991
  • The structures such as railway bridges can be modelled as the multi-span beam on the elastic foundation. These structures are usually subject to the moving load, which has a great effect on dynamic stresses and can cause severe motions, especially at high velocities. In this paper, the dynamic responses of the multi-span beam on the elastic foundation were obtained by using the Galerkin's method and the numerical time integration technique. As trial functions, the same orthogonal polynomial functions obtained in part 1, were used. From the numerical results, it was found that the one term expansion of the assumed solution usually leads to the accurate solutions. However, in the case that the stiffness of the transnational spring is very high or the rotational spring is placed where the slope of the first mode is zero, the higher modes must be included to obtain the accurate solutions.

  • PDF

Improved Modal Pushover Analysis of Multi-span Continuous Bridge Structures (다경간 연속 교량 구조물의 지진응답 평가를 위한 개선된 모드별 비탄성 정적 해석법에 관한 연구)

  • Kwak, Hyo-Gyoung;Hong, Seong Jin;Kim, Young Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.497-512
    • /
    • 2006
  • In this paper, a simple but effective analysis procedure to estimate seismic capacities of multi-span continuous bridge structures is proposed on the basis of modal pushover analysis considering all the dynamic modes of structure. Unlike previous studies, the proposed method eliminates the coupling effects induced from the direct application of modal decomposition by introducing an identical stiffness ratio and an approximate elastic deformed shape. Moreover, in addition to these two introductions, the use of an appropriate distributed load {P} makes it possible to predict the dynamic responses for all kinds of bridge structures through a simpler analysis procedure. Finally, in order to establish the validity and applicability of the proposed method, correlation studies between rigorous nonlinear time history analysis and the proposed method are conducted for multi-span continuous bridges.

An improved pushover analysis procedure for multi-mode seismic performance evaluation of bridges : (1) Introduction to numerical model

  • Kwak, Hyo-Gyoung;Shin, Dong-Kyu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.215-238
    • /
    • 2009
  • This paper introduces an improved modal pushover analysis (IMPA) which can effectively evaluate the seismic response of multi-span continuous bridge structures on the basis of modal pushover analysis (MPA). Differently from previous modal pushover analyses which cause the numerical unstability because of the occurrence of reversed relation between the pushover load and displacement, the proposed method eliminates this numerical instability and, in advance the coupling effects induced from the direct application of modal decomposition by introducing an identical stiffness ratio for each dynamic mode at the post-yielding stage together with an approximate elastic deformation. In addition to these two introductions, the use of an effective seismic load, calculated from the modal spatial force and applied as the distributed load, makes it possible to predict the dynamic responses of all bridge structures through a simpler analysis procedure than those in conventional modal pushover analyses. Finally, in order to establish validity and applicability of the proposed method, correlation studies between a rigorous nonlinear time history analysis and the proposed method were conducted for multi-span continuous bridges.

An improved pushover analysis procedure for multi-mode seismic performance evaluation of bridges: (2) Correlation study for verification

  • Kwak, Hyo-Gyoung;Shin, Dong Kyu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.239-255
    • /
    • 2009
  • In the companion paper, a simple but effective analysis procedure termed an Improved Modal Pushover Analysis (IMPA) is proposed to estimate the seismic capacities of multi-span continuous bridge structures on the basis of the modal pushover analysis, which considers all the dynamic modes of a structure. In contrast to previous studies, the IMPA maintains the simplicity of the capacity-demand curve method and gives a better estimation of the maximum dynamic response in a bridge structure. Nevertheless, to verify its applicability, additional parametric studies for multi-span continuous bridges with large differences in the length of adjacent piers are required. This paper, accordingly, concentrates on a parametric study to review the efficiency and limitation in the application of IMPA to bridge structures through a correlation study between various analytical models including the equivalent single-degree-of-freedom method (ESDOF) and modal pushover analysis (MPA) that are usually used in the seismic design of bridge structures. Based on the obtained numerical results, this paper offers practical guidance and/or limitations when using IMPA to predict the seismic response of a bridge effectively.

Dynamic Stiffness Design of Inspection Robot Frame Using Multi-body Dynamic Simulation (동역학 해석을 통한 송전선로 검사로봇 프레임 설계에 관한 연구)

  • Lee, Jun Young;Kim, Moon Young;Lim, Ji Youn;Kim, Chang Hwan;Yim, Hong Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.169-175
    • /
    • 2015
  • This study aims to improve the dynamic stiffness of an inspection robot frame to prevent derailment from transmission lines. Finite element models for the transmission lines and robot frame are developed for the multi-body dynamic simulation. Natural frequency analysis was conducted using the FE models. Three types of spacer damper clamps installed on 4-conductor transmission lines are used to evaluate the derailment of the robot. Multi-body dynamic simulations with FE models are demonstrated for sub-span oscillation. When the robot operates, derailment of inspection robot from the transmission lines is determined because of resonance. To prevent the resonance, body position was changed and thickness optimization was conducted. The results show that derailment was not occurred because of the natural frequency improvement.

Dynamic Stability Analysis of the Nuclear Fuel Rod Affected by the Swirl Flow due to the Flow Mixer (유동혼합기에 의한 회전유동을 고려한 핵연료 봉의 동적 안정성해석)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.641-646
    • /
    • 2008
  • Long and slender body with or without flexible supports under severe operating condition can be unstabilized even by the small cross flow. Turbulent flow mixer, which actually increases thermal-hydraulic performance of the nuclear fuel by boosting turbulence, disturbs the flow field around the fuel rod and affects dynamic behavior of the nuclear fuel rods. Few studies on this problem can be found in the literature because these effects depend on the specific natures of the support and the design of the system. This work shows how the dynamics of a multi-span fuel rod can be affected by the turbulent flow, which is discretely activated by a flow mixer. By solving a state-space form of the eigenvalue equation for a multi-span fuel rod system, the critical velocity at which a fuel rod becomes unstable was established. Based on the simulation results, we evaluated how stability of a multi-spanned nuclear fuel rod with mixing vanes can be affected by the coolant flow in an operating reactor core.

  • PDF

Research of Grip Forces and Subjective Preferences for Various Individual Finger Grip Spans by using an (MFFM System을 이용한 손가락 별 파지 폭들의 변화에 따른 악력 및 개인 선호도에 대한 연구)

  • Kim, Dae-Min;Kong, Yong-Ku
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • Individual finger/total grip forces, and subjective preferences for various individual finger grip spans (i.e., four fingers had identical grip spans or different grip spans) were evaluated by using an "Adjustable Multi-Finger Force Measurement (MFFM) System". In this study, three grip spans were defined as follows: a 'favorite grip span' which is the span with the highest subjective preference; a 'maximum grip span' which is the span with the highest total grip force; a 'maximum finger grip span' which is a set of four grip spans that had maximum finger grip forces associated with the index, middle, ring, and little fingers, respectively. Ten males were recruited from university population for this study. In experiment I, each participant tested the maximum grip force with five grip spans (45 to 65mm) to investigate grip forces and subjective preferences for three types of grip spans. Results showed that subjective preferences for grip spans were not coincidence with the performance of total grip forces. It was noted that the 'favorite grip span' represented the lowest total grip force, whereas the 'maximum finger grip span' showed the lowest subjective preferences. The individual finger forces and the average percentage contribution to the total finger force were also investigated in this study. The findings of this study might be valuable information for designing ergonomics hand-tools to reduce finger/hand stress as well as to improve tool users' preferences and performance.

Wear Characteristics of Multi-Span Tube Due to Turbulence Excitation (다경간 전열관의 난류 여기에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Ryu, Ki-Wahn;Park, Chi-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.919-924
    • /
    • 2005
  • Fretting-wear caused by turbulence excitation for KSNP(Korea standard nuclear power plant) steam generator is investigated numerically. Secondary sides density and normal velocity are obtained by the thermal-hydraulic data of the steam generator. Because nonlinear finite element analysis is complex and time consuming, work rate is estimated by using linear analysis for simple straight 2-span tube. Wear volume and depth by using work rate calculation are estimated. Span length, secondary side fluid density and normal velocity are adopted to study the effects on the fretting-wear by turbulence excitation. When secondary sides density and normal velocity is increased, It turns out that secondary side density and normal gap velocity are very important paramater for fretting-wear phenomena of the steam generator.

  • PDF