• Title/Summary/Keyword: Multi-Sensor

Search Result 2,023, Processing Time 0.036 seconds

Defect Detection and Defect Classification System for Ship Engine using Multi-Channel Vibration Sensor (다채널 진동 센서를 이용한 선박 엔진의 진동 감지 및 고장 분류 시스템)

  • Lee, Yang-Min;Lee, Kwang-Young;Bae, Seung-Hyun;Jang, Hwi;Lee, Jae-Kee
    • The KIPS Transactions:PartA
    • /
    • v.17A no.2
    • /
    • pp.81-92
    • /
    • 2010
  • There has been some research in the equipment defect detection based on vibration information. Most research of them is based on vibration monitoring to determine the equipment defect or not. In this paper, we introduce more accurate system for engine defect detection based on vibration information and we focus on detection of engine defect for boat and system control. First, it uses the duplicated-checking method for vibration information to determine the engine defect or not. If there is a defect happened, we use the method using error part of vibration information basis with error range to determine which kind of error is happened. On the other hand, we use the engine trend analysis and standard of safety engine to implement the vibration information database. Our simulation results show that the probability of engine defect determination is 100% and the probability of engine defect classification and detection is 96%.

Proposal of a piezoelectric floating mass transducer for implantable middle ear hearing devices (이식형 인공중이를 위한 압전 플로팅 매스 트랜스듀서의 제안)

  • Lee, Chang-Woo;Kim, Min-Kyu;Park, Il-Yong;Song, Byung-Seop;Roh, Yong-Rae;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.322-330
    • /
    • 2005
  • A new type of transducer, piezoelectric floating mass transducer (PFMT) which has advantages of piezoelectric and electromagnetic transducer has been proposed and implemented for the implantable middle ear hearing devices. By the uneven bonding of piezoelectric material to the inner bottom of transducer case, the PFMT can vibrate back-and-forth along the longitudinal axis of the transducer even though the piezoelectric material within the cylindrical case produces only the bilateral expansion and contraction according to the applied electrical signal. To improve efficiency of the PFMT, the multi-layered piezoelectric material has been adapted. The small number of components in the PFMT enables the simple manufacturing and the easy implanting into the middle ear. In order to examine the characteristics of vibration, mechanical modeling and finite element analyses of the proposed transducer have been performed. From the result of theoretical analyses and the measured data from the experiment, it is verified that the implemented PFMT can be used in implantable middle ear hearing devices.

Bioelectrical Impedance Analysis at Popliteal Regions of Human Body using BIMS

  • Kim, J.H.;Kim, S.S.;Kim, S.H.;Baik, S.W.;Jeon, G.R.
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Bioelectrical impedance (BI) at popliteal regions was measured using a bioelectrical impedance measurement system (BIMS), which employs the multi-frequency and the two-electrode method. Experiments were performed as follows. First, a constant AC current of $800{\mu}A$ was applied to the popliteal regions (left and right) and the BI was measured at eight different frequencies from 10 to 500 kHz. When the applied frequency greater than 50 kHz was applied to human's popliteal regions, the BI was decreased significantly. Logarithmic plot of impedance vs. frequency indicated two different mechanisms in the impedance phenomena before and after 50 kHz. Second, the relationship between resistance and reactance was obtained with respect to the applied frequency using BI (resistance and reactance) acquired from the popliteal regions. The phase angle (PA) was found to be strongly dependent on frequency. At 50 kHz, the PA at the right popliteal region was $7.8^{\circ}$ slightly larger than $7.6^{\circ}$ at the left popliteal region. Third, BI values of extracellular fluid (ECF) and intracellular fluid (ICF) were calculated using BIMS. At 10 kHz, the BI values of ECF at the left and right popliteal regions were $1664.14{\Omega}$ and $1614.08{\Omega}$, respectively. The BI values of ECF and ICF decreased sharply in the frequency range of 10 to 50 kHz, and gradually decreased up to 500 kHz. Logarithmic plot of BI vs. frequency shows that the BI of ICF decreased noticeably at high frequency above 300 kHz because of a large decrease in the capacitance of the cell membrane.

Determination of Water Content in Compacted Bentonite Using a Hygrometer and Its Application (습도계를 이용한 압축벤토나이트 내 함수율 결정 및 적용)

  • Lee, Jae-Owan;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • Investigation of resaturation and thermal-hydro-mechanical behavior for the buffer of a repository requires measuring the water content of compacted bentonite. This study investigated the relative humidity of compacted bentonites using a humidity sensor (Vaisala HMT 334) applicable under high temperature and pressure, and then conducted a multi-regression analysis based on the measured results to determine relationships among the water content, relative humidity, and temperature. The relationships for the compacted bentonites with the dry densities of 1,500 $kg/m^3$ and 1,600 $kg/m^3$ were expressed as ${\omega}=0.196RH-0.029T+1.391({r^2=0.96)}$ and ${\omega}=0.199RH-0.029T+2.596({r^2=0.98)}$, respectively. These were then used to interpret the resaturation of bentonite blocks in the KENTEX test.

  • PDF

A Study on a Algorithm of Gait Analysis and Step Count with Pressure Sensors (보행수 측정 및 보행패턴 분류 알고리즘)

  • Do, Ju-pyo;Choi, Dae-yeong;Kim, Dong-jun;Kim, Kyung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1810-1814
    • /
    • 2017
  • This paper develops an approach to the algorithm of Gait pattern Analysis and step measurement with Multi-Pressure Sensors. The process of gait consists of 8 steps including stance and swing phase. As 3 parts of foot is supporting most of human weight, multiple pressure sensors are attached on the parts of foot: forefoot, big toe, heel. As 3 parts of foot is supporting most of human weight, multiple pressure sensors are attached on the parts of foot: forefoot, big toe, heel. normal gait proceed from heel, forefoot and big toe over time. While normal gait proceeds, values of heel, forefoot and big toe can be changed over time. So Each values of pressure sensors over time could discriminate whether it is normal or abnormal gait. Measuring Device consists of non-inverting amplifiers and low pass filter. Through timetable of values, normal gait pattern can be analyzed, because of supported weight of foot. Also, the peak value of pressure can judge whether it is walking or running. While people are running, insole of shoes is floating in the air on moment. Using this algorithm, gait analysis and step count can be measured.

Development of High-Sensitivity Detection Sensor and Module for Spatial Distribution Measurement of Multi Gamma Sources (감마선원의 공간분포 가시화 및 3D모델링을 위한 운용환경 개발)

  • Song, Keun-Young;Lim, Ji-Seok;Choi, Jung-Huk;Yuk, Young-Ho;Hwang, Young-Gwan;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.702-704
    • /
    • 2017
  • In case of dismantling of nuclear power generation facility or radiation accident, the accurate information of gammaray source is essential for rapid decontamination. In order to more efficiently represent the position of the gamma ray to be removed, we create a spatial domain based on the real image. And we can perform decontamination of gamma-ray source more quickly by expressing the distribution of radiation source. The developed gamma ray imaging device overlaps with the visible image after gamma - ray detection and provides only two - dimensional image, but it does not show the distance information to the source. In this paper, we have developed a operation environment using the 3D visualization model for reporting effective decontamination operation.

  • PDF

MMJoin: An Optimization Technique for Multiple Continuous MJoins over Data Streams (데이타 스트림 상에서 다중 연속 복수 조인 질의 처리 최적화 기법)

  • Byun, Chang-Woo;Lee, Hun-Zu;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.35 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Join queries having heavy cost are necessary to Data Stream Management System in Sensor Network where plural short information is generated. It is reasonable that each join operator has a sliding-window constraint for preventing DISK I/O because the data stream represents the infinite size of data. In addition, the join operator should be able to take multiple inputs for overall results. It is possible for the MJoin operator with sliding-windows to do so. In this paper, we consider the data stream environment where multiple MJoin operators are registered and propose MMJoin which deals with issues of building and processing a globally shared query considering characteristics of the MJoin operator with sliding-windows. First, we propose a solution of building the global shared query execution plan. Second, we solved the problems of updating a window size and routing for a join result. Our study can be utilized as a fundamental research for an optimization technique for multiple continuous joins in the data stream environment.

Development and Application of IoT-based Contactless Ultraosonic System (IoT 기반 비접촉 초음파 측정 시스템 개발 및 적용)

  • Kim, Jihwan;Hong, Jinyoung;Kim, Rrulri;Woo, Ukyong;Choi, Hajin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.70-79
    • /
    • 2020
  • The main objective of this research to develop an IoT based wireless contactless ultrasonic system (ICUS) and its application to concrete structure. The developed system consists of 16 mems, 2Mhz digitizer, amplifying circuit, FPGA, and wifi module, enabling to measure leaky surface waves from concrete specimens without physical coupling process and wires. Multi-channel analysis is performed to improve the accuracy of data analysis, and the velocity of leaky surface waves and acoustics are derived. Field inspection of railroad concrete sleepers is conducted to evaluate the performance of the system and to compare the results with conventional ultrasonic pulse velocity (UPV). As a result of the field inspection, UPV was limited to evaluate damages. This is because crack pattern of railroad sleepers is parallel to ultrasonic ray path and accessibility of the railroad at the field is disadvantageous to contact-based UPV. On the other hand, ICUS possibly detect the damages as reduction of dynamic modulus by up to 59% compared to non-damaged specimen.

Classification Strategies for High Resolution Images of Korean Forests: A Case Study of Namhansansung Provincial Park, Korea

  • Park, Chong-Hwa;Choi, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.708-708
    • /
    • 2002
  • Recent developments in sensor technologies have provided remotely sensed data with very high spatial resolution. In order to fully utilize the potential of high resolution images, new image classification strategies are necessary. Unfortunately, the high resolution images increase the spectral within-field variability, and the classification accuracy of traditional methods based on pixel-based classification algorithms such as Maximum-Likelihood method may be decreased (Schiewe 2001). Recent development in Object Oriented Classification based on image segmentation algorithms can be used for the classification of forest patches on rugged terrain of Korea. The objectives of this paper are as follows. First, to compare the pros and cons of image classification methods based on pixel-based and object oriented classification algorithm for the forest patch classification. Landsat ETM+ data and IKONOS data will be used for the classification. Second, to investigate ways to increase classification accuracy of forest patches. Supplemental data such as DTM and Forest Type Map of 1:25,000 scale are used for topographic correction and image segmentation. Third, to propose the best classification strategy for forest patch classification in terms of accuracy and data requirement. The research site for this paper is Namhansansung Provincial Park located at the eastern suburb of Seoul Metropolitan City for its diverse forest patch types and data availability. Both Landsat ETM+ and IKONOS data are used for the classification. Preliminary results can be summarized as follows. First, topographic correction of reflectance is essential for the classification of forest patches on rugged terrain. Second, object oriented classification of IKONOS data enables higher classification accuracy compared to Landsat ETM+ and pixel-based classification. Third, multi-stage segmentation is very useful to investigate landscape ecological aspect of forest communities of Korea.

  • PDF

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF