• Title/Summary/Keyword: Multi-Resolution Image

Search Result 555, Processing Time 0.024 seconds

High-Resolution Tiled Display System for Visualization of Large-scale Analysis Data (초대형 해석 결과의 분석을 위한 고해상도 타일 가시화 시스템 개발)

  • 김홍성;조진연;양진오
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.67-74
    • /
    • 2006
  • In this paper, a tiled display system is developed to get a high-resolution image in visualization of large-scale structural analysis data with low-resolution display devices and low-cost cluster computer system. Concerning the hardware system, some of the crucial points are investigated, and a new beam-projector positioner is designed and manufactured to resolve the keystone phenomena which result in distorted image. In the development of tiled display software, Qt and OpenGL are utilized for GUI and rendering, respectively. To obtain the entire tiled image, LAM-MPI is utilized to synchronize the several sub-images produced from each cluster computer node.

Spatially Scalable Kronecker Compressive Sensing of Still Images (공간 스케일러블 Kronecker 정지영상 압축 센싱)

  • Nguyen, Canh Thuong;Jeon, Byeungwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.118-128
    • /
    • 2015
  • Compressive sensing (CS) has to face with two challenges of computational complexity reconstruction and low coding efficiency. As a solution, this paper presents a novel spatially scalable Kronecker two layer compressive sensing framework which facilitates reconstruction up to three spatial resolutions as well as much improved CS coding performance. We propose a dual-resolution sensing matrix based on the quincunx sampling grid which is applied to the base layer. This sensing matrix can provide a fast-preview of low resolution image at encoder side which is utilized for predictive coding. The enhancement layer is encoded as the residual measurement between the acquired measurement and predicted measurement data. The low resolution reconstruction is obtained from the base layer only while the high resolution image is jointly reconstructed using both two layers. Experimental results validate that the proposed scheme outperforms both conventional single layer and previous multi-resolution schemes especially at high bitrate like 2.0 bpp by 5.75dB and 5.05dB PSNR gain on average, respectively.

Fast Multi-Resolution Exhaustive Search Algorithm Based on Clustering for Efficient Image Retrieval (효율적인 영상 검색을 위한 클러스터링 기반 고속 다 해상도 전역 탐색 기법)

  • Song, Byeong-Cheol;Kim, Myeong-Jun;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.2
    • /
    • pp.117-128
    • /
    • 2001
  • In order to achieve optimal retrieval, i.e., to find the best match to a query according to a certain similarity measure, the exhaustive search should be performed literally for all the images in a database. However, the straightforward exhaustive search algorithm is computationally expensive in large image databases. To reduce its heavy computational cost, this paper presents a fast exhaustive multi-resolution search algorithm based on image database clustering. Firstly, the proposed algorithm partitions the whole image data set into a pre-defined number of clusters having similar feature contents. Next, for a given query, it checks the lower bound of distances in each cluster, eliminating disqualified clusters. Then, it only examines the candidates in the remaining clusters. To alleviate unnecessary feature matching operations in the search procedure, the distance inequality property is employed based on a multi-resolution data structure. The proposed algorithm realizes a fast exhaustive multi-resolution search for either the best match or multiple best matches to the query. Using luminance histograms as a feature, we prove that the proposed algorithm guarantees optimal retrieval with high searching speed.

  • PDF

Implementation of theVerification and Analysis System for the High-Resolution Stereo Camera (고해상도 다기능 스테레오 카메라 지상 검증 및 분석 시스템 구현)

  • Shin, Sang-Youn;Ko, Hyoungho
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.471-482
    • /
    • 2019
  • The mission of the high-resolution camera for the lunar exploration is to provide 3D topographic information. It enables us to find the appropriate landing site or to control accurate landing by the short distance stereo image in real-time. In this paper, the ground verification and analysis system using the multi-application stereo camera to develop the high-resolution camera for the lunar exploration are proposed. The mission test items and test plans for the mission requirement are provided and the test results are analyzed by the ground verification and analysis system. For the realistic simulation for the lunar orbiter, the target area that has similar characteristics with the real lunar surface is chosen and the aircraft flight is planned to take image of the area. The DEM is extracted from the stereo image and compose three dimensional results. The high-resolution camera mission requirements for the lunar exploration are verified and the ground data analysis system is developed.

Manipulation of 3D Surface Data within Web-based 3D Geo-Processing

  • Choe, Seung-Keol;Kim, Kyong-Ho;Lee, Jong-Hun;Yang, Young-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.80-83
    • /
    • 1999
  • An efficient modeling and management of a large amount of surface data for a wide rage of geographic information play an important role in determining the functionality of 3D geographic information system. It has been put many efforts to design and manage an effective way to enhence the manipulation of the data by considering geometry type and data structures. Recently, DEM(Data Elevation Model) and TIN(Triangulated Irregular Network) are used for representing surface data. In this paper, we propose a 3D data processing method. The method utilizes the major properties of DEM and TIN, respectively. Furthermore, by approximating DEM with a TIN of an appropriate resolution, we can support a fast and realistic surface modeling. We implement the structure with the following 4 level stages. The first is an optimal resolution of DEM which represent all of wide range of geographic data. The second is the full resolution DEM which is a subarea of original data generated by user's selection in our implemeatation. The third is the TIN approximation of this data with a proper resolution determined by the relative position with the camera. And the last step is multi-resolution TIN data whose resolution is dynamically decided by considering which direction user take notice currently. Specially, the TIN of the last step is designed for realtime camera navigation. By using the structure we implemented realtime surface clipping, efficient approximation of height field and the locally detailed surface LOD(Level of Detail). We used the initial 10-meter sampling DEM data of Seoul, KOREA and implement the structure to the 3D Virtual GIS based on the Internet.

  • PDF

3D Surface Representation and Manipulation Scheme for Web-based 3D Geo-Processing

  • Choe, Seung-Keol;Kim, Kyong-Ho;Lee, Jong-Hun;Yang, Young-Kyu
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1999.12a
    • /
    • pp.66-71
    • /
    • 1999
  • For given 3D geographic data which is usually of DEM(Data Elevation Model) format, we have to represent and manipulate the data in various ways. For example, we have to draw a part of them in drawing canvas. To do this we give users a way of selecting area they want to visualize. And we have to give a base tool for users to select the local area which can be chosen for some geographic operation. In this paper, we propose a 3D data processing method for representation and manipulation. The method utilizes the major properties of DEM and TIN(Triangular Irregular Network), respectively. Furthermore, by approximating DEM with a TIN of an appropriate resolution, we can support a fast and realistic surface modeling. We implement the structure with the following 4 level stages. The first is an optimal resolution of DEM which represent all of wide range of geographic data. The second is the full resolution DEM which is a subarea of original data generated by user's selection in our implemeatation. The third is the TIN approximation of this data with a proper resolution determined by the relative position with the camera. And the last step is multi-resolution TIN data whose resolution is dynamically decided by considering which direction user take notice currently. Specialty, the TIN of the last step is designed for realtime camera navigation. By using the structure we implemented realtime surface clipping, efficient approximation of height field and the locally detailed surface LOD(Level of Detail). We used the initial 10-meter sampling DEM data of Seoul, KOREA and implement the structure to the 3D Virtual GIS based on the Internet.

  • PDF

Half-pel Accuracy Motion Estimation Algorithm using Selective Interpolation in the Wavelet Domain (웨이블릿 영역에서의 선택적인 보간에 의한 반화소 단위 움직임 추정)

  • 이경환;정영훈;황희철
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.40-47
    • /
    • 2003
  • In this paper, we propose a new method for reducing the computational overhead of fine-to-coarse multi-resolution motion estimation (MRME) at the finest resolution level by searching for the region to consider motion vectors of the coarsest resolution subband. At this time, if half-pel accuracy motion estimation (HPAME) is used in the baseband where influence a lot of effect to the reconstructed image, we can have the motion vector exactly But, this method causes to higher computational overhead. So we suggest the method to the computational overhead by using selective interpolation. Experimental results show that the proposed algorithm gives better results than the traditional algorithms from image quality.

  • PDF

Multi-Channel Data Link Module Design for High Speed Image Data Transmission from Spaceborne SAR (위성 영상 레이다의 고속자료 전송을 위한 멀티 채널 데이터 전송 모듈 설계와 성능 특징)

  • Kwag, Young-Kil
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.2
    • /
    • pp.149-157
    • /
    • 2001
  • A high speed data link capability is one of the critical factors in determining the performance of the spaceborne SAR system with high resolution. It is due to the strict requirement for the real-time data transmission from a series of massive raw image data of spaceborne SAR to the ground station in a limited time of mission. In this paper, based on the data link model characterized by the spaceborne small SAR system, the high rate multi-channel data link module is designed including link storage, link processor, transmitter, and wide-angle antenna. The design results are presented with the performance analysis on the data link budget as well as the multi-mode data rate in association with the SAR imaging mode of operation from high resolution to the wide swath.

  • PDF

A Study on Shifted Multi-Z-Buffers Anti-Aliasing for 3D Implicit Surface Rendering (3차원 임플리시트 곡면 렌더링을 위한 시프트(shifted) 멀티 Z-버퍼 앤티 앨리어싱 연구)

  • Park Hwa Jin;Kim Hak Ran
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.2
    • /
    • pp.249-257
    • /
    • 2005
  • This paper aims at reducing aliasing in pixel-based rendering for 3D implicit surfaces by shifted multi Z-buffers. The voxelized implicit surfaces with high resolution take so much time in generating high Quality image without aliasing. So in rendering a voxelized implicit surfaces, a new antialiasing method which can generate a high quality image at a lower resolution is required. Therefore, this paper suggests that a method which get various sampling values by shifting several z-buffers in each voxel and average them, The advantages are effective memory, simple calculation and easy convergence with various filters. But, the increase of number of z-buffer also increase the consuming time rapidly. Therefore, the research for representing the relation the degree of image quality with the consumption of time as a number is required.

  • PDF

A Study of Land-Cover Classification Technique for Merging Image Using Fuzzy C-Mean Algorithm (Fuzzy C-Mean 알고리즘을 이용한 중합 영상의 토지피복분류기법 연구)

  • 신석효;안기원;양경주
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.2
    • /
    • pp.171-178
    • /
    • 2004
  • The advantage of the remote sensing is extraction the information of wide area rapidly. Such advantage is the resource and environment are quick and efficient method to grasps accurately method through the land cover classification of wide area. Accordingly this study was presented more better land cover classification method through an algorithm development. We accomplished FCM(Fuzzy C-Mean) classification technique with MLC (Maximum Likelihood classification) technique to be general land cover classification method in the content of research. And evaluated the accuracy assessment of two classification method. This study is used to the high-resolution(6.6m) Electro-Optical Camera(EOC) panchromatic image of the first Korea Multi-Purpose Satellite 1(KOMPSAT-1) and the multi-spectral Moderate Resolution Imaging Spectroradiometer(MODIS) image data(36 bands).