• Title/Summary/Keyword: Multi-Point

Search Result 2,352, Processing Time 0.031 seconds

A New Calibration of 3D Point Cloud using 3D Skeleton (3D 스켈레톤을 이용한 3D 포인트 클라우드의 캘리브레이션)

  • Park, Byung-Seo;Kang, Ji-Won;Lee, Sol;Park, Jung-Tak;Choi, Jang-Hwan;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.247-257
    • /
    • 2021
  • This paper proposes a new technique for calibrating a multi-view RGB-D camera using a 3D (dimensional) skeleton. In order to calibrate a multi-view camera, consistent feature points are required. In addition, it is necessary to acquire accurate feature points in order to obtain a high-accuracy calibration result. We use the human skeleton as a feature point to calibrate a multi-view camera. The human skeleton can be easily obtained using state-of-the-art pose estimation algorithms. We propose an RGB-D-based calibration algorithm that uses the joint coordinates of the 3D skeleton obtained through the posture estimation algorithm as a feature point. Since the human body information captured by the multi-view camera may be incomplete, the skeleton predicted based on the image information acquired through it may be incomplete. After efficiently integrating a large number of incomplete skeletons into one skeleton, multi-view cameras can be calibrated by using the integrated skeleton to obtain a camera transformation matrix. In order to increase the accuracy of the calibration, multiple skeletons are used for optimization through temporal iterations. We demonstrate through experiments that a multi-view camera can be calibrated using a large number of incomplete skeletons.

Spatio-spectral Fusion of Multi-sensor Satellite Images Based on Area-to-point Regression Kriging: An Experiment on the Generation of High Spatial Resolution Red-edge and Short-wave Infrared Bands (영역-점 회귀 크리깅 기반 다중센서 위성영상의 공간-분광 융합: 고해상도 적색 경계 및 단파 적외선 밴드 생성 실험)

  • Park, Soyeon;Kang, Sol A;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.523-533
    • /
    • 2022
  • This paper presents a two-stage spatio-spectral fusion method (2SSFM) based on area-to-point regression kriging (ATPRK) to enhance spatial and spectral resolutions using multi-sensor satellite images with complementary spatial and spectral resolutions. 2SSFM combines ATPRK and random forest regression to predict spectral bands at high spatial resolution from multi-sensor satellite images. In the first stage, ATPRK-based spatial down scaling is performed to reduce the differences in spatial resolution between multi-sensor satellite images. In the second stage, regression modeling using random forest is then applied to quantify the relationship of spectral bands between multi-sensor satellite images. The prediction performance of 2SSFM was evaluated through a case study of the generation of red-edge and short-wave infrared bands. The red-edge and short-wave infrared bands of PlanetScope images were predicted from Sentinel-2 images using 2SSFM. From the case study, 2SSFM could generate red-edge and short-wave infrared bands with improved spatial resolution and similar spectral patterns to the actual spectral bands, which confirms the feasibility of 2SSFM for the generation of spectral bands not provided in high spatial resolution satellite images. Thus, 2SSFM can be applied to generate various spectral indices using the predicted spectral bands that are actually unavailable but effective for environmental monitoring.

Positioning Precision Improvement of Multi-GNSS Kinematic PPP Using WMN Method

  • Choi, Byung-Kyu;Yoon, Ha Su;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.205-210
    • /
    • 2017
  • Multi-Global Navigation Satellite System (GNSS) can significantly improve the positioning accuracy and convergence speed. The reliability and availability of multi-GNSS precise point positioning (PPP) is steadily increasing with the rapid development of GNSS satellites. In this study, multi-GNSS PPP analysis is performed to compare the positioning precision by processing the observations from different GNSS systems (GPS, GLONASS, Galileo and BeiDou). To improve the positioning performance of the multi-GNSS PPP, we employed the weighed measurement noise (WMN) method. After applying WMN method to multi-GNSS PPP, positioning precision is improved by approximately 26.3% compared to the GPS only solutions, and by approximately 9.1% compared to combined GPS, GLONASS, and Galileo PPP.

A Dual-Mode Mixer for Multi-Band Radar Signal Reception (다중 대역 레이더 신호 수신을 위한 이중 모드 주파수 혼합기)

  • Go, Min-Ho;Kim, Hyoung-Joo;Nah, Sun-Phil;Kim, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1047-1054
    • /
    • 2013
  • In this paper, we propose a dual-mode mixer to have multi-band radar signal receiver to be compact. The proposed mixer using a anti-parallel diode is operated as a fundamental mixer or sub-harmonic mixer with respect to a control voltage. A fundamental mixer with a control voltage show a conversion loss of -10 dB, 1dB compression point of 2 dBm at X-band. On the other hand, it is performed as a sub-harmonic mixer with a conversion loss of -10 dB, 1 dB compression point of 2 dBm at K-band.

Symbiotic organisms search algorithm based solution to optimize both real power loss and voltage stability limit of an electrical energy system

  • Pagidi, Balachennaiah;Munagala, Suryakalavathi;Palukuru, Nagendra
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.255-274
    • /
    • 2016
  • This paper presents a novel symbiotic organisms search (SOS) algorithm to optimize both real power loss (RPL) and voltage stability limit (VSL) of a transmission network by controlling the variables such as unified power flow controller (UPFC) location, UPFC series injected voltage magnitude and phase angle and transformer taps simultaneously. Mathematically, this issue can be formulated as nonlinear equality and inequality constrained multi objective, multi variable optimization problem with a fitness function integrating both RPL and VSL. The symbiotic organisms search (SOS) algorithm is a nature inspired optimization method based on the biological interactions between the organisms in ecosystem. The advantage of SOS algorithm is that it requires a few control parameters compared to other meta-heuristic algorithms. The proposed SOS algorithm is applied for solving optimum control variables for both single objective and multi-objective optimization problems and tested on New England 39 bus test system. In the single objective optimization problem only RPL minimization is considered. The simulation results of the proposed algorithm have been compared with the results of the algorithms like interior point successive linear programming (IPSLP) and bacteria foraging algorithm (BFA) reported in the literature. The comparison results confirm the efficacy and superiority of the proposed method in optimizing both single and multi objective problems.

Tensor-Based Channel Estimation Approach for One-Way Multi-Hop Relaying Communications

  • Li, Shuangzhi;Mu, Xiaomin;Guo, Xin;Yang, Jing;Zhang, Jiankang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4967-4986
    • /
    • 2015
  • Multi-hop relaying communications have great potentials in improving transmission performance by deploying relay nodes. The benefit is critically dependent on the accuracy of the channel state information (CSI) of all the transmitting links. However, the CSI has to be estimated. In this paper, we investigate the channel estimation problem in one-way multi-hop MIMO amplify-and-forward (AF) relay system, where both the two-hop and three-hop communication link exist. Traditional point-to-point MIMO channel estimation methods will result in error propagation in estimating relay links, and separately tackling the channel estimation issue of each link will lose the gain as part of channel matrices involved in multiple communication links. In order to exploit all the available gains, we develop a novel channel estimation model by structuring different communication links using the PARAFAC and PARATUCK2 tensor analysis. Furthermore, a two-stage fitting algorithm is derived to estimate all the channel matrices involved in the communication process. In particular, essential uniqueness is further discussed. Simulation results demonstrate the advantage and effectiveness of the proposed channel estimator.

Adaptive Mode Switching in Correlated Multiple Antenna Cellular Networks

  • Lee, Chul-Han;Chae, Chan-Byoung;Vishwanath, Sriram;Heath, Jr., Robert W.
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.279-286
    • /
    • 2009
  • This paper proposes an adaptive mode switching algorithm between two strategies in multiple antenna cellular networks:A single-user mode and a multi-user mode for the broadcast channel. If full channel state information is available at the base station, it is known that a multi user transmission strategy would outperform all single-user transmission strategies. In the absence of full side information, it is unclear what the capacity achieving method is, and thus there are few criteria to decide which of the myriad possible methods performs best given a system configuration. We compare a single user transmission and a multi user transmission with linear receivers in this paper where the transmitter and the receivers have multiple antennas, and find that neither strategy dom inates the other. There is instead a transition point between the two strategies. Then, the mode switching point is determined both ana lytically and numerically for a multiple antenna cellular downlink with correlation between transmit antennas.

Sojourn Time Analysis Using SRPT Scheduling for Heterogeneous Multi-core Systems (Heterogeneous 멀티코어 시스템에서 SRPT 스케줄링을 사용한 체류 시간 분석)

  • Yang, Bomi;Park, Hyunjae;Choi, Young-June
    • Journal of KIISE
    • /
    • v.44 no.3
    • /
    • pp.223-231
    • /
    • 2017
  • In this paper, we study the performance of recently popular multi-core systems in mobiles. Previous research on the multi-core performance usually focused on the desktop PC. However, there is enough scope to further analyze heterogeneous multi-core systems. Therefore, by extending homogeneous multi-core systems, we analyze the heterogeneous multi-core systems using Size Interval Task Allocation (SITA) for job allocation, and Shortest Remaining Processing Time (SRPT) scheduling, for each individual core. We propose a new computational method regarding the cutoff point, which is crucial in analyzing SITA, by calculating the sojourn time. This facilitate easy and accurate calculation of the sojourn time. We further confirm our analysis through the ESESC simulator that provides actual measurements.

Connection between Fourier of Signal Processing and Shannon of 5G SmartPhone (5G 스마트폰의 샤논과 신호처리의 푸리에의 표본화에서 만남)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.69-78
    • /
    • 2017
  • Shannon of the 5G smartphone and Fourier of the signal processing meet in the sampling theorem (2 times the highest frequency 1). In this paper, the initial Shannon Theorem finds the Shannon capacity at the point-to-point, but the 5G shows on the Relay channel that the technology has evolved into Multi Point MIMO. Fourier transforms are signal processing with fixed parameters. We analyzed the performance by proposing a 2N-1 multivariate Fourier-Jacket transform in the multimedia age. In this study, the authors tackle this signal processing complexity issue by proposing a Jacket-based fast method for reducing the precoding/decoding complexity in terms of time computation. Jacket transforms have shown to find applications in signal processing and coding theory. Jacket transforms are defined to be $n{\times}n$ matrices $A=(a_{jk})$ over a field F with the property $AA^{\dot{+}}=nl_n$, where $A^{\dot{+}}$ is the transpose matrix of the element-wise inverse of A, that is, $A^{\dot{+}}=(a^{-1}_{kj})$, which generalise Hadamard transforms and centre weighted Hadamard transforms. In particular, exploiting the Jacket transform properties, the authors propose a new eigenvalue decomposition (EVD) method with application in precoding and decoding of distributive multi-input multi-output channels in relay-based DF cooperative wireless networks in which the transmission is based on using single-symbol decodable space-time block codes. The authors show that the proposed Jacket-based method of EVD has significant reduction in its computational time as compared to the conventional-based EVD method. Performance in terms of computational time reduction is evaluated quantitatively through mathematical analysis and numerical results.

3D Reconstruction of an Indoor Scene Using Depth and Color Images (깊이 및 컬러 영상을 이용한 실내환경의 3D 복원)

  • Kim, Se-Hwan;Woo, Woon-Tack
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.53-61
    • /
    • 2006
  • In this paper, we propose a novel method for 3D reconstruction of an indoor scene using a multi-view camera. Until now, numerous disparity estimation algorithms have been developed with their own pros and cons. Thus, we may be given various sorts of depth images. In this paper, we deal with the generation of a 3D surface using several 3D point clouds acquired from a generic multi-view camera. Firstly, a 3D point cloud is estimated based on spatio-temporal property of several 3D point clouds. Secondly, the evaluated 3D point clouds, acquired from two viewpoints, are projected onto the same image plane to find correspondences, and registration is conducted through minimizing errors. Finally, a surface is created by fine-tuning 3D coordinates of point clouds, acquired from several viewpoints. The proposed method reduces the computational complexity by searching for corresponding points in 2D image plane, and is carried out effectively even if the precision of 3D point cloud is relatively low by exploiting the correlation with the neighborhood. Furthermore, it is possible to reconstruct an indoor environment by depth and color images on several position by using the multi-view camera. The reconstructed model can be adopted for interaction with as well as navigation in a virtual environment, and Mediated Reality (MR) applications.

  • PDF