Browse > Article
http://dx.doi.org/10.11003/JPNT.2017.6.4.205

Positioning Precision Improvement of Multi-GNSS Kinematic PPP Using WMN Method  

Choi, Byung-Kyu (Space Geodesy Group, Korea Astronomy and Space Science Institute)
Yoon, Ha Su (Space Geodesy Group, Korea Astronomy and Space Science Institute)
Lee, Sang Jeong (Department of Electronics Engineering, Chungnam National University)
Publication Information
Journal of Positioning, Navigation, and Timing / v.6, no.4, 2017 , pp. 205-210 More about this Journal
Abstract
Multi-Global Navigation Satellite System (GNSS) can significantly improve the positioning accuracy and convergence speed. The reliability and availability of multi-GNSS precise point positioning (PPP) is steadily increasing with the rapid development of GNSS satellites. In this study, multi-GNSS PPP analysis is performed to compare the positioning precision by processing the observations from different GNSS systems (GPS, GLONASS, Galileo and BeiDou). To improve the positioning performance of the multi-GNSS PPP, we employed the weighed measurement noise (WMN) method. After applying WMN method to multi-GNSS PPP, positioning precision is improved by approximately 26.3% compared to the GPS only solutions, and by approximately 9.1% compared to combined GPS, GLONASS, and Galileo PPP.
Keywords
PPP; multi-GNSS; positioning precision; WMN;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bertiger, W., Desai, S. D., Haines, B., Harvey, N., Moore, A. W., et al. 2010, Single receiver phase ambiguity resolution with GPS data, J. Geod, 84, 327-337. https://doi.org/10.1007/s00190-010-0371-9   DOI
2 Blewitt, G., Kreemer, C., Hammond, W. C., & Gazeaux, J. 2016, MIDAS robust trend estimator for accurate GPS station velocities without step detection, JGR, 121, 2054-2068. https://doi.org/10.1002/2015JB012552
3 Choi, B. K., Cho, C. H., & Lee, S. J. 2017, Multi-GNSS Kinematic Precise Point Positioning: Some Results in South Korea, JPNT, 6, 35-41. https://doi.org/10.11003/JPNT.2017.6.1.35
4 Collins, P., Bisnath, S., Lahaye, F., & Heroux, P. 2010, Undifferenced GPS Ambiguity Resolution Using the Decoupled Clock Model and Ambiguity Datum Fixing, Navigation, 57, 123-135. https://doi.org/10.1002/j.2161-4296.2010.tb01772.x   DOI
5 Elmas, Z. G., Aquino, M., Marques, H. A., & Monico, J. F. G. 2011, Higher order ionospheric effects in GNSS positioning in the European region, Ann. Geophys., 29, 1383-1399. https://doi.org/10.5194/angeo-29-1383-2011   DOI
6 Hernandez-Pajares, M., Juan, J. M., Sanz, J., & Orus, R. 2007, Second-order ionospheric term in GPS: Implementation and impact on geodetic estimates, JGR, 112:B08417. https://doi.org/10.1029/2006JB004707
7 Hobiger, T., Ichikawa, R., Takasu, T., Koyama, Y., & Kondo, T. 2008, Ray-traced troposphere slant delays for precise point positioning, EPS, 60(5), e1-e4
8 Ibrahim, H. A. & El-Rabbany, A. 2011, Performance analysis of NOAA tropospheric signal delay model, Meas. Sci. Technol., 22:115107. https://doi.org/10.1088/0957-0233/22/11/115107   DOI
9 Jaggi, A., Hugentobler, U., Bock, H., & Beutler, G. 2007, Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data, Adv. Space. Res., 39, 1612-1619. https://doi.org/10.1016/j.asr.2007.03.012   DOI
10 Kouba, J. & Heroux, P. 2001, Precise point positioning using IGS orbit and clock products, GPS Solut., 5, 12-28. https://doi.org/10.1007/PL00012883   DOI
11 Leandro, R. F., Santos, M. C., & Langley, R. B. 2011, Analyzing GNSS data in precise point positioning software, GPS Solut., 15, 1-13. https://doi.org/10.1007/s10291-010-0173-9   DOI
12 Rabbou, M. A., & El-Rabbany, A. 2015, PPP Accuracy Enhancement Using GPS/GLONASS Observations in Kinematic Mode, Positioning, 6, 1-6. https://doi.org/10.4236/pos.2015.61001   DOI
13 Li, X, Zhang, X., Ren, X., Fritsche, M., Wickert, J., et al. 2015, Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou, Sci. Rep., 5, 8328. https://doi.org/10.1038/srep08328   DOI
14 Lou, Y., Zheng, F., Gu, S., Wang, C., Guo, H., et al. 2016, Multi-GNSS precise point positioning with raw singlefrequency and dual-frequency measurement models, GPS Solut., 20, 849-862. https://doi.org/10.1007/s10291-015-0495-8   DOI
15 Montenbruck, O., Gill, E., & Kroes, R. 2005, Rapid orbit determination of LEO satellites using IGS clock and ephemeris products, GPS Solut., 9, 226-235. https://doi.org/10.1007/s10291-005-0131-0   DOI
16 Skone, S., Gao, Y., Al-Fanek, O., Tao, W., Zhang, Y., et al. 2006, Atmospheric moisture estimation using GPS on a moving platform, in Proceedings of ION GNSS 19th International Technical Meeting of the Satellite Division, Fort Worth, TX USA, September 26-29, 2006, pp.1891-1901
17 Yuan, Y., Tscherning, C. C., Knudsen, P., Xu, G., & Ou, J. 2008, The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS, J. Geod., 82, 1-8. https://doi.org/10.1007/s00190-007-0152-2   DOI