• 제목/요약/키워드: Multi-Physics Analysis

검색결과 176건 처리시간 0.036초

자동차용 엔진 풀리 설계 변수의 상관관계 분석 (Correlation Analysis of Design Parameters for Automotive Engine Pulley)

  • 김형중;천두만;안성훈;장재덕;홍순석;황범철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.139-142
    • /
    • 2005
  • The Digital Meister is an advisory system to help the designer using the knowledge obtained from design and analysis data. In this paper, Taguchi method was applied to analyze the design parameters of automotive engine pulley. As a finite element method (FEM), ALGOR Multi-physics was used for analyzing the static analysis. As a result, two bending positions and material thickness were highly related to the maximum stress. These correlations between design parameters and analysis result will be used for supporting the design process of Digital Meister.

  • PDF

Neutronics analysis of TRIGA Mark II research reactor

  • Rehman, Haseebur;Ahmad, Siraj-ul-Islam
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.35-42
    • /
    • 2018
  • This article presents clean core criticality calculations and control rod worth calculations for TRIGA (Training, Research, Isotope production-General Atomics) Mark II research reactor benchmark cores using Winfrith Improved Multi-group Scheme-D/4 (WIMS-D/4) and Program for Reactor In-core Analysis using Diffusion Equation (PRIDE) codes. Cores 133 and 134 were analyzed in 2-D (r, ${\theta}$) and 3-D (r, ${\theta}$, z), using WIMS-D/4 and PRIDE codes. Moreover, the influence of cross-section data was also studied using various libraries based on Evaluated Nuclear Data File (ENDF/B-VI.8 and VII.0), Joint Evaluated Fission and Fusion File (JEFF-3.1), Japanese Evaluated Nuclear Data Library (JENDL-3.2), and Joint Evaluated File (JEF-2.2) nuclear data. The simulation results showed that the multiplication factor calculated for all these data libraries is within 1% of the experimental results. The reactivity worth of the control rods of core 134 was also calculated with different homogenization approaches. A comparison was made with experimental and reported Monte Carlo results, and it was found that, using proper homogenization of absorber regions and surrounding fuel regions, the results obtained with PRIDE code are significantly improved.

LNG 벙커링용 QC/DC 밸로즈의 유동/구조 해석 (CFD/CAE Analysis of QC/DC Bellows for LNG Bunkering)

  • 장성철;엄정필;정현철
    • 한국산업융합학회 논문집
    • /
    • 제21권5호
    • /
    • pp.191-195
    • /
    • 2018
  • By using an ANSYS product suite (CFX, Ansys Multiphysics), which is a powerful tool for multiphysics analysis of complicated physical phenomena, we performed a structural stress analysis based on fluid flow and heat transfer phenomena within a quick connect/disconnect (QC/DC) bellows system. Considering the extremely low temperatures in the QC/DC environment, an approach to the problem based on complex multi-physics phenomena, where different phenomena interact with each other, is crucial. Therefore, we use a numerical analysis technique where fluid-thermal-structural interactions are combined. In conclusion, when low temperature fluids flow inside bellows, the expected service life is conspicuously reduced due to the thermal stress caused by heat transfer. Therefore, in future research, a structure with considerably reduced thermal stress by robust design optimization will be derived.

Multi-wavelength view of SPT-CL J2106-5844: A massive galaxy cluster merger at z~1.13

  • Kim, HyeongHan;Di Mascolo, Luca;Mroczkowski, Tony;Perrott, Yvette;Rudnick, Lawrence;Jee, M. James;Churazov, Eugene;Collier, Jordan D.;Diego, Jose M.;Hopkins, Andrew M.;Kim, Jinhyub;Koribalski, Barbel S.;Marvil, Joshua D.;van der Burg, Remco;West, Jennifer L.
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.34.2-34.2
    • /
    • 2021
  • SPT-CL J2106-5844 is the most massive galaxy cluster at z>1 discovered to date. It has been known to be an isolated system with a singular, well-defined halo. However, recent studies provide lines of evidence for its merging state. We strengthen the case with the multi-wavelength observations from ALMA, ACA, ASKAP, ATCA, and Chandra. With the sensitive, high resolution ALMA+ACA observations, we reconstruct the ICM pressure map from the thermal SZ effect. It reveals two main gas components that are associated with the mass clumps inferred from the weak-lensing analysis. Furthermore, the X-ray hardness map supports the bimodal gas distribution. With these multi-wavelength data, we probe the merger phase in SPT-CL J2106-5844.

  • PDF

Numerical Model for Cerebrovascular Hemodynamics with Indocyanine Green Fluorescence Videoangiography

  • Hwayeong Cheon;Young-Je Son;Sung Bae Park;Pyoung-Seop Shim;Joo-Hiuk Son;Hee-Jin Yang
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권4호
    • /
    • pp.382-392
    • /
    • 2023
  • Objective : The use of indocyanine green videoangiography (ICG-VA) to assess blood flow in the brain during cerebrovascular surgery has been increasing. Clinical studies on ICG-VA have predominantly focused on qualitative analysis. However, quantitative analysis numerical modelling for time profiling enables a more accurate evaluation of blood flow kinetics. In this study, we established a multiple exponential modified Gaussian (multi-EMG) model for quantitative ICG-VA to understand accurately the status of cerebral hemodynamics. Methods : We obtained clinical data of cerebral blood flow acquired the quantitative analysis ICG-VA during cerebrovascular surgery. Varied asymmetric peak functions were compared to find the most matching function form with clinical data by using a nonlinear regression algorithm. To verify the result of the nonlinear regression, the mode function was applied to various types of data. Results : The proposed multi-EMG model is well fitted to the clinical data. Because the primary parameters-growth and decay rates, and peak center and heights-of the model are characteristics of model function, they provide accurate reference values for assessing cerebral hemodynamics in various conditions. In addition, the primary parameters can be estimated on the curves with partially missed data. The accuracy of the model estimation was verified by a repeated curve fitting method using manipulation of missing data. Conclusion : The multi-EMG model can possibly serve as a universal model for cerebral hemodynamics in a comparison with other asymmetric peak functions. According to the results, the model can be helpful for clinical research assessment of cerebrovascular hemodynamics in a clinical setting.

다기능 선량계로서의 Cadmium sulfide의 X-선에 대한 특성 평가 (The Measurement and Evaluation of X-ray Characteristics of Cadmium Sulfide as a Multi-function Dosimeter)

  • Park, Sung-Kwang;Park, Young-Min;Cho, Heung-Lae;Nam, Sang-Hee
    • 한국의학물리학회지:의학물리
    • /
    • 제14권3호
    • /
    • pp.161-166
    • /
    • 2003
  • 다기능 X-선 선량계로서의 cadmium sulfide의 X-선에 대한 특성을 평가하기 위해 cadmium sulfide 기반의 X-선 선량계를 진공 증착법을 사용하여 제작하였으며 X-선 노출에 따른 cadmium sulfide의 반응을 측정하였다. Cadmium sulfide의 X-선 관전압, 관전류, 조사시간에 따른 전압의 변화를 측정하여 이를 분석하였다. X-선의 관전압에 따른 cadmium sulfide의 반응을 회귀분석을 통해 통계처리 한 결과 y=0.0995x-0.1146 ($R^2$=0.9595, $\sigma$=0.08, standard error=2%) 이고 X-선 관전류에 따른 cadmium sulfide의 출력신호를 분석한 결과 y=0.0439x+1.1891 ($R^2$=0.9021, $\sigma$=0.04, standard error=1.8%)였다. 또한 X-선 조사시간에 따른 cadmium sulfide의 반응을 같은 통계 방법으로 통계처리한 결과 y=8.2853x+5.5878 ($R^2$=0.7287, $\sigma$=0.06, standard error=1.9%) 였다. 결론적으로 cadmium sulfide의 X-선에 대한 반응은 X-선의 에너지가 증가됨에 따라 선형적으로 반응함을 알 수 있었으며 제작된 cadmium sulfide의 X-선의 다기능 선량계로서의 그 사용 가능성을 제시하고자 한다.

  • PDF

Evaluation of the Accuracy of Distance Measurements on 3D Volume-rendered Image of Human Skull Using Multi-detector CT: Effects of Acquisition Section Thickness and Reconstruction Section Thickness

  • Haijo Jung;Kim, Hee-Joung;Lee, Sang-Ho;Kim, Dong-Wook;Soonil Hong;Kim, Dong-Hyeon;Son, Hye-Kyung;Wonsuk Kang;Kim, Kee-Deog
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.457-460
    • /
    • 2002
  • The image quality of three-dimensional (3D) images has been widely investigated by the qualitative analysis method. A need remains for an objective and quantitative method to assess the image quality of 3D volume-rendered images. The purpose of this study was to evaluate the quantitative accuracy of distance measurements on 3D volume-rendered images of a dry human skull by using multi-detector computed tomography (MDCT). A radiologist measured five times the twenty-one direct measurement line items composed among twelve reference points on the skull surface with a digital vernier caliper. The water filled skull specimen was scanned with a MDCT according to the section thicknesses of 1.25, 2.50, 3.75, and 5.00 mm for helical (high quality; pitch 3:1) scan mode. MDCT data were reconstructed with its acquisition section thickness and with 1.25 mm section thickness for all scans. An observer also measured seven times the corresponding items on 3D volume-rendered images with measuring tools provided by volumetric analysis software. The quantitative accuracy of distance measurements on the 3D volume-rendered images was statistically evaluated (p-value < 0.05) by comparatively analyzing these measurements with the direct distance measurements. The accuracy of distance measurements on the 3D volume-rendered MDCT images acquired with 1.25, 2.50, 3,75 and 5.00 mm section thickness and reconstructed with its section thickness were 48%, 33%, 23%, and 14%, respectively. Meanwhile, there were insignificant statistical differences in accuracy of distance measurements among 3D volume-rendered images reconstructed with 1.25 mm section thickness for the each acquisition section thickness. MDCT images acquired with thick section thickness and reconstructed with thin section thickness in helical scan mode should be effectively used in medical planning of 3D volume-rendered images. The quantitative analysis of distance measurement may be a useful tool for evaluating the quantitative accuracy and the defining optimal parameters of 3D volume-rendered CT images.

  • PDF

정위적 방사선 수술시 3차원적 공간상의 체적소에 기반한 회전중심점들(Multi-isocenter)의 표적내 자동적 배치 및 분석 (Arrangement and analysis of multi-isocenter based on 3-D spatial unit in stereotactic radiosurgery)

  • 최경식;오승종;이정우;서태석;최보영;김문찬
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2004년도 제29회 추계학술대회 발표논문집
    • /
    • pp.75-77
    • /
    • 2004
  • 정위적 방사선 수술은 치료와는 달리 한 번에 많은 양의 방사선을 병소를 중심으로 조사한다. 그러므로, 수술 계획시 치료 영역에서의 병소를 중심으로 한 선량분포의 계획은 대단히 중요하다. 실질적으로, 수술 계획자는 정확하고 효율적인 수술 계획을 수립하기 위해 많은 시행착오(trial and error)를 거치면서 최적의 수술 계획을 완성한다. 본 연구는 공간상의 기본 단위인 체적소에 근거하여 병소와 일정영역간의 분포로서 회전중심점들(Multi-isocenter)을 불규칙한 모양의 병소내 자동적으로 최적의 배치 방법을 제안하였다. 또한, 이를 검증하기위해 3개의 다른 모양과 체적을 가지는 가상의 표적들에 대하여 이 방법을 적용하였다. 그 결과, 병소에 대한 선량분포 일치도(conformity)와 균질성(homogeneity)은 RTOG의 권고사항을 잘 만족하였다. 이러한 방법은 선형가속기와 감마나이프를 이용한 수술 계획시 수술 계획자에게 많은 도움을 줄 수 있을 것이라 사료된다.

  • PDF

AKARI-NEP : EFFECTS OF AGN PRESENCE ON SFR ESTIMATES OF GALAXIES

  • Marchetti, L.;Feltre, A.;Berta, S.;Baronchelli, I.;Serjeant, S.;Vaccari, M.;Bulgarella, D.;Karouzos, M.;Murata, K.;Oi, N.;Pearson, C.;Rodighiero, G.;Segdwick, C.;White, G.J.
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.239-244
    • /
    • 2017
  • How does the presence of an AGN influence the total SFR estimates of galaxies and change their distribution with respect to the Galaxy Main Sequence? To contribute to solving this question, we study a sample of 1133 sources detected in the North Ecliptic Pole field (NEP) by AKARI and Herschel. We create a multi-wavelength dataset for these galaxies and we fit their multi-wavelength Spectral Energy Distribution (SED) using the whole spectral regime (from 0.1 to $500{\mu}m$). We perform the fit using three procedures: LePhare and two optimised codes for identifying AGN tracers from the SED analysis. In this work we present an overview of the comparison between the estimates of the Infrared bolometric luminosities (between 8 and $1000{\mu}m$) and the AGN fractions obtained exploiting these different procedures. In particular, by estimating the AGN contribution in four different wavelength ranges ($5-40{\mu}m$, $10-20{\mu}m$, $20-40{\mu}m$ and $8-1000{\mu}m$) we show how the presence of an AGN affects the PAH emission by suppressing the ratio $\frac{L_{8{\mu}m}}{L_{4.5{\mu}m}}$ as a function of the considered wavelength range.

전자기 용접의 충돌 속도에 대한 코일 형상의 영향 (Effect of a Coil Shape on an Impulse Velocity of the Electromagnetic Welding)

  • 박현일;이광석;이진우;이영선;김대용
    • 소성∙가공
    • /
    • 제28권3호
    • /
    • pp.135-144
    • /
    • 2019
  • Electromagnetic impulse welding (EMIW) is a type of solid state welding using the Lorentz force generated by interaction between the magnetic field of the coil and the current induced in the workpiece. Although many experimental studies have been investigated on the expansion and compression welding of tube using the EMIW process, studies on the EMIW process of lap joint between flat sheets are uncommon. Since the magnetic field enveloped inside the tube can be controlled with ease, the electromagnetic technique has been widely used for tube welding. Conversely, it is difficult to control the magnetic field in the flat sheet welding so as to obtain the required welding velocity. The current study analyzed the effects of coil shape on the impulse velocity for suitable flat one-turn coil for the EMIW of the flat sheets. The finite element (FE) multi-physics simulation involving magnetic and structural field of EMIW were conducted with the commercial software LS-DYNA to evaluate the several shape variables, viz., influence of various widths, thicknesses, gaps and standoff distances of the flat one-turn coil on the impulse velocity. To obtain maximum impulse velocity, the flat one-turn coil was designed based on the FE simulation results. The experiments were performed using an aluminum alloy 1050 sheets of 1.0mm thickness using the designed flat one-turn coil. Through the microscopic interfacial analysis of the welded specimens, the interfacial connectivity was observed to have no defects. In addition, the single lap joint tests were performed to evaluate the welding strength, and a fracture occurred in the base material. As a result, a flat one-turn coil was successfully designed to guarantee welding with bond strength equal to or greater than the base material strength.