DOI QR코드

DOI QR Code

AKARI-NEP : EFFECTS OF AGN PRESENCE ON SFR ESTIMATES OF GALAXIES

  • Marchetti, L. (Department of Physical Sciences, The Open University) ;
  • Feltre, A. (Institute d'Astrophysique de Paris) ;
  • Berta, S. (Max-Planck-Institut fur extraterrestrische Physik (MPE)) ;
  • Baronchelli, I. (Dipartimento di Fisica e Astronomia, Universita degli Studi di Padova) ;
  • Serjeant, S. (Department of Physical Sciences, The Open University) ;
  • Vaccari, M. (Astrophysics Group, Physics Department, University of the Western Cape) ;
  • Bulgarella, D. (Aix-Marseille Universite, CNRS, LAM (Laboratoire d'Astrophysique de Marseille)) ;
  • Karouzos, M. (Department of Physics and Astronomy, Seoul National University) ;
  • Murata, K. (Department of Space and Astronautical Science, GUAS) ;
  • Oi, N. (Institute of Space and Astronautical Science, JAXA) ;
  • Pearson, C. (RAL Space, Rutherford Appleton Laboratory) ;
  • Rodighiero, G. (Dipartimento di Fisica e Astronomia, Universita degli Studi di Padova) ;
  • Segdwick, C. (Department of Physical Sciences, The Open University) ;
  • White, G.J. (Department of Physical Sciences, The Open University)
  • Received : 2015.09.01
  • Accepted : 2016.10.20
  • Published : 2017.03.31

Abstract

How does the presence of an AGN influence the total SFR estimates of galaxies and change their distribution with respect to the Galaxy Main Sequence? To contribute to solving this question, we study a sample of 1133 sources detected in the North Ecliptic Pole field (NEP) by AKARI and Herschel. We create a multi-wavelength dataset for these galaxies and we fit their multi-wavelength Spectral Energy Distribution (SED) using the whole spectral regime (from 0.1 to $500{\mu}m$). We perform the fit using three procedures: LePhare and two optimised codes for identifying AGN tracers from the SED analysis. In this work we present an overview of the comparison between the estimates of the Infrared bolometric luminosities (between 8 and $1000{\mu}m$) and the AGN fractions obtained exploiting these different procedures. In particular, by estimating the AGN contribution in four different wavelength ranges ($5-40{\mu}m$, $10-20{\mu}m$, $20-40{\mu}m$ and $8-1000{\mu}m$) we show how the presence of an AGN affects the PAH emission by suppressing the ratio $\frac{L_{8{\mu}m}}{L_{4.5{\mu}m}}$ as a function of the considered wavelength range.

Keywords

References

  1. Arnouts, S., et al., 1999, Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North, MNRAS, 310, 540 https://doi.org/10.1046/j.1365-8711.1999.02978.x
  2. Berta, S., Lutz, D., Santini, P., et al., 2013, Panchromatic spectral energy distributions of Herschel sources, A&A, 551, A100 https://doi.org/10.1051/0004-6361/201220859
  3. Brusa, M., Bongiorno, A., Cresci, G., et al., 2014, X-shooter reveals powerful out ows in z - 1.5 X-ray selected obscured quasi stellar objects, arXiv:1409.1615
  4. Bower, R. G., Benson, A. J., Malbon, R., et al., 2006, Breaking the hierarchy of galaxy formation, MNRAS, 370, 645 https://doi.org/10.1111/j.1365-2966.2006.10519.x
  5. Caputi, K. I., Lagache, G., Yan, L., et al., 2007, The Infrared Luminosity Function of Galaxies at Redshifts z = 1 and z - 2 in the GOODS Fields, ApJ, 660, 97 https://doi.org/10.1086/512667
  6. da Cunha, E., Charlot, S., & Elbaz, D., 2008, A simple model to interpret the ultraviolet, optical and infrared emission from galaxies, MNRAS, 388, 1595 https://doi.org/10.1111/j.1365-2966.2008.13535.x
  7. Delvecchio, I., Gruppioni, C., Pozzi, F., et al., 2014, Tracing the cosmic growth of supermassive black holes to z - 3 with Herschel, MNRAS, 439, 2736 https://doi.org/10.1093/mnras/stu130
  8. Elbaz, D., Dickinson, M., Hwang, H. S., et al., 2011, GOODS-Herschel: an infrared main sequence for star-forming galaxies, A&A, 533, A119 https://doi.org/10.1051/0004-6361/201117239
  9. Farrah, D., Afonso, J., Efstathiou, A., et al., 2003, Starburst and AGN activity in ultraluminous infrared galaxies, MNRAS, 343, 585 https://doi.org/10.1046/j.1365-8711.2003.06696.x
  10. Feltre, A., Hatziminaoglou, E., Fritz, J., & Franceschini, A., 2012, Smooth and clumpy dust distributions in AGN: a direct comparison of two commonly explored infrared emission models, MNRAS, 426, 120 https://doi.org/10.1111/j.1365-2966.2012.21695.x
  11. Feltre, A., Hatziminaoglou, E., Hernan-Caballero, A., et al., 2013, The roles of star formation and AGN activity of IRS sources in the HerMES fields, MNRAS, 434, 2426 https://doi.org/10.1093/mnras/stt1177
  12. Fritz, J., Franceschini, A., & Hatziminaoglou, E., 2006, Revisiting the infrared spectra of active galactic nuclei with a new torus emission model, MNRAS, 366, 767 https://doi.org/10.1111/j.1365-2966.2006.09866.x
  13. Kennicutt, R. C., Jr., 1998, The Global Schmidt Law in Star-forming Galaxies, ApJ, 498, 541 https://doi.org/10.1086/305588
  14. Kim, S. J., Lee, H. M., Matsuhara, H., et al., 2012, The North Ecliptic Pole Wide survey of AKARI: a near- and mid-infrared source catalog, A&A, 548, A29 https://doi.org/10.1051/0004-6361/201219105
  15. Ilbert, O., et al., 2006, Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey, A&A, 457, 841 https://doi.org/10.1051/0004-6361:20065138
  16. Ilbert, O., Capak, P., Salvato, M., et al., 2009, Cosmos Photometric Redshifts with 30-Bands for 2-$deg^2$, ApJ, 690, 1236 https://doi.org/10.1088/0004-637X/690/2/1236
  17. Murakami, H., Baba, H., Barthel, P., et al., 2007, The Infrared Astronomical Mission AKARI, ASJ, 59, 369
  18. Murata, K., Matsuhara, H., Wada, T., et al., 2013, AKARI North Ecliptic Pole Deep Survey. Revision of the catalogue via a new image analysis, A&A, 559, A132 https://doi.org/10.1051/0004-6361/201321505
  19. Murata, K., Matsuhara, H., Inami, H., et al., 2014, Polycyclic aromatic hydrocarbon feature de cit of starburst galaxies in the AKARI North Ecliptic Pole Deep field, A&A, 566, A136 https://doi.org/10.1051/0004-6361/201423744
  20. Oi, N., Matsuhara, H., Murata, K., et al., 2014, Optical - near-infrared catalog for the AKARI north ecliptic pole Deep field, A&A, 566, A60 https://doi.org/10.1051/0004-6361/201322561
  21. Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al., 2010, Herschel Space Observatory. An ESA facility for far-infrared and submillimetre astronomy, A&A, 518, L1 https://doi.org/10.1051/0004-6361/201014759
  22. Rodighiero, G., Daddi, E., Baronchelli, I., et al., 2011, The Lesser Role of Starbursts in Star Formation at z = 2, ApJ, 739, L40 https://doi.org/10.1088/2041-8205/739/2/L40
  23. Rodighiero, G., Renzini, A., Daddi, E., et al., 2014, A multiwavelength consensus on the main sequence of starforming galaxies at z - 2, MNRAS, 443, 19 https://doi.org/10.1093/mnras/stu1110
  24. Shim, H., Im, M., Ko, J., et al., 2013, Hectospec and Hydra Spectra of Infrared Luminous Sources in the AKARI North Ecliptic Pole Survey Field, ApJs, 207, 37 https://doi.org/10.1088/0067-0049/207/2/37
  25. Werner, M. W., Roellig, T. L., Low, F. J., et al., 2004, The Spitzer Space Telescope Mission, ApJ, 154, 1 https://doi.org/10.1086/422992