• 제목/요약/키워드: Multi-Phase Fluids

검색결과 51건 처리시간 0.023초

환기 공동을 이용한 수중운동체 주위의 초월 공동 다상유동장 해석 (The Numerical multi-phase analysis of ventilating flow around vehicle)

  • 박원규;김동현;정철민
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.252-255
    • /
    • 2011
  • Supercavitating torpedo uses the supercavitation technology that can reduce dramatically the skin friction drag. The present work focuses on the numerical analysis of the non-condensable cavitating flow around the supercavitating torpedo. The governing equations are the Navier-Stokes equations based on the homogeneous mixture model. The cavitation model uses a new cavitation model which was developed by Merkle(2006). The multiphase flow solver uses an implicit preconditioning scheme in curvilinear coordinates. The ventilated cavitation is implemented by non-condensable gas injection on backward of cavitator cone and the base of the torpedo. The comparison between the without and with ventilated cavitation numerical results, with ventilated cavitation using non-condensable gas injection is more efficient method.

  • PDF

DISCRETE PARTICLE SIMULATION OF DENSE PHASE PARTICULATE FLOWS

  • Tsuji Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.11-19
    • /
    • 2005
  • First, methods of numerical analysis of gas-particle flows is classified into micro, meso and macro scale approaches based on the concept of multi-scale mechanics. Next, the explanation moves on to discrete particle simulation where motion of individual particles is calculated numerically using the Newtonian equations of motion. The author focuses on the cases where particle-to-particle interaction has significant effects on the phenomena. Concerning the particle-to-particle interaction, two cases are considered: the one is collision-dominated flows and the other is the contact-dominated flows. To treat this interaction mathematically, techniques named DEM(Distinct Element Method) or DSMC (Direct Simulation Monte Carlo) have been developed DEM, which has been developed in the field of soil mechanics, is useful for the contact -dominated flows and DSMC method, developed in molecular gas flows, is for the collision-dominated flows. Combining DEM or DSMC with CFD (computer fluid dynamics), the discrete particle simulation becomes a more practical tool for industrial flows because not only the particle-particle interaction but particle-fluid interaction can be handled. As examples of simulations, various results are shown, such as hopper flows, particle segregation phenomena, particle mixing in a rotating drum, dense phase pneumatic conveying, spouted bed, dense phase fluidized bed, fast circulating fluidized bed and so on.

  • PDF

전산유체역학을 이용한 교반기 내부의 고체/액체 다상유동 해석 (CFD SIMULATIONS OF SOLID/LIQUID TWO-PHASE FLow IN AN AGITATOR)

  • 김치겸;원찬식;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.27-31
    • /
    • 2007
  • Glass particle distribution in a stirred solid/liquid systems was investigated using computational fluid dynamics(CFD). The numerical results were compared to experimental data from the available literature which investigated the local dispersed phase volume fraction by means of an endoscope technique. Eulerian multi-phase model and applications considered high loading of solid particle was used to investigate the influence of the particle concentration and mixing tank size on the solid distribution. A good agreement was obtained between the experimental data and simulation results. The results showed different solid particle distribution in an agitator by particle concentration and mixer size.

  • PDF

비정렬격자 SIMPLE 알고리즘기반 이상유동 수치해석 기법 (NUMERICAL METHOD FOR TWO-PHASE FLOW ANALYSIS USING SIMPLE-ALGORITHM ON AN UNSTRUCTURED MESH)

  • 김종태;박익규;조형규;김경두;정재준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.71-78
    • /
    • 2008
  • For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.

  • PDF

비정렬격자 SIMPLE 알고리즘기반 이상유동 수치해석 기법 (NUMERICAL METHOD FOR TWO-PHASE FLOW ANALYSIS USING SIMPLE-ALGORITHM ON AN UNSTRUCTURED MESH)

  • 김종태;박익규;조형규;김경두;정재준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.71-78
    • /
    • 2008
  • For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.

  • PDF

아스팔트바인더 유체를 위한 새로운 특성방정식 (New Constitutive Equations for Asphalt Binder Fluids)

  • 허정도
    • 한국도로학회논문집
    • /
    • 제7권2호
    • /
    • pp.57-67
    • /
    • 2005
  • 거의 대부분의 문헌에서 아스팔트바인더의 유동거동을 다룰 때, 단일상 균일 유체로 일률적으로 취급하는데 이로 인한 오류가 심각하다. 본 연구에서는 개질이던 스트레이트이던 아스팔트바인더의 유동과 관련된 특성방정식을 모두 소개하고, 특히 다상 불균일 유체의 특성방정식을 새로이 소개한다. 이러한 식들의 특징 이 무엇인지를 실제 측정된 아스팔트바인더의 동전단시험 데이터를 이용하여 설명한다 특히 단일상 균일 유체와 다상 불균일 유체와의 거동차이전과 특성방정식의 차이점에 대해 집중 부각한다. 이러한 차이는 아스팔트유체를 다룰 때 어떠한 특성방정식을 사용해야 하며,특정 바인더를 분석하기 위해서는 어떤 물성을 조사해야 하는 지에 대해서 이해하게 한다. 본 연구는 개질바인더의 분석과 등급제정에 필수적인 정보를 제공한다.

  • PDF

약실 내 추진제 위치에 따른 강내탄도 성능해석 (STUDY ON PROPERTIES OF INTERIOR BALLISTICS ACCORDING TO SOLID PROPELLANT POSITION IN CHAMBER)

  • 장진성;성형건;이상복;노태성
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.17-24
    • /
    • 2010
  • Using the numerical code for the interior ballistics, the performance of the interior ballistics with the characteristics according to the position of the solid propellant in chamber has been investigated. In existing research, propellants have been evenly distributed in the chamber. In this study, however, several cases of the existence of empty space in the chamber at which the propellants are not evenly distributed are considered. The 7-perforated propellant configuration has been used in this research. The results have shown the change of performance of the interior ballistics according to solid propellant positions in the chamber.

비정렬 격자계에서 균질혼합 모델을 이용한 2차원 수중익형 주위의 캐비테이션 유동 해석 (CAVITATION FLOW SIMULATION FOR A 2-D HYDROFOIL USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES)

  • 안상준;권오준
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.94-100
    • /
    • 2012
  • In this paper, the cavitating flows around a hydrofoil have been numerically investigated by using a 2-d multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. For this purpose, a vertex-centered finite-volume method was utilized in conjunction with 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing. The Spalart-Allmaras one equation model was employed for the closure of turbulence. A dual-time stepping method and the Gauss-Seidel iteration were used for unsteady time integration. The phase change rate between the liquid and vapor phases was determined by Merkle's cavitation model based on the difference between local and vapor pressure. Steady state calculations were made for the modified NACA66 hydrofoil at several flow conditions. Good agreements were obtained between the present results and the experiment for the pressure coefficient on a hydrofoil surface. Additional calculation was made for cloud cavitation around the hydrofoil. The observation of the vapor structure, such as cavity size and shape, was made, and the flow characteristics around the cavity were analyzed. Good agreements were obtained between the present results and the experiment for the frequency and the Strouhal number of cavity oscillation.

배플 형상에 따른 교반기 내부 고체입자 분포의 비정상상태 해석 (TRANSIENT SIMULATION OF SOLID PARTICLE DISTRIBUTION WITH BAFFLES DESIGN PARAMETERS IN A STIRRED TANK)

  • 김치겸;원찬식;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.171-175
    • /
    • 2008
  • In the present study, a numerical simulations are investigated in a stirred solid/liquid system by using Eulerian multi-phase model. The transient flow field of liquid phase and distribution of solid particles are predicted in stirred tanks consisting of 4-pitched paddles impeller and baffles. The effects of number and width of baffles on the mixing time and the quality of solid suspension in a stirred tank are presented numerically. The result shows that the mixing time decreases as the width and number of baffles increase.

  • PDF

교반기 내부의 고체/액체 다상 유동의 비정상상태 해석 (Transient Simulation of Solid/Liquid Two-Phase Flow in a Stirred Tank)

  • 김치겸;용석진;원찬식;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.236-239
    • /
    • 2008
  • In the present study, a transient glass particle distribution in a stirred solid/liquid mixer was investigated using computational fluid dynamics(CFD). The flow patterns and solid concentaration distriburion in a solid/liquid mixer formed by pitched paddle and baffles were predicted. The numerical results were compared to experimental data from the available literature. Eulerian multi-phase model was used to investigate the influence of the density of solid particle on the same impeller speed. A good agreement was obtained between the experimental data and simulation results.

  • PDF