# 비정렬격자 SIMPLE 알고리즘기반 이상유동 수치해석 기법

# 김 종 태,<sup>\*1</sup> 박 익 규<sup>2</sup>, 조 형 규<sup>2</sup>, 김 경 두<sup>2</sup>, 정 재 준<sup>1</sup>

# NUMERICAL METHOD FOR TWO-PHASE FLOW ANALYSIS USING SIMPLE-ALGORITHM ON AN UNSTRUCTURED MESH

Jongtae Kim,<sup>\*1</sup> Ik-Kyu Park,<sup>2</sup> Hyung-Kyu Cho,<sup>2</sup> Kyung Doo Kim<sup>2</sup> and Jae Jun Jeong<sup>1</sup>

For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.

Key Words : 이상유동(Two-Phase Flow), SIMPLE 알고리즘(SIMPLE Algorithm), 비정렬격자(Unstructured Mesh)

# 1.서론

이상유동(two-phase flow)은 우리 생활에 여러모로 영향을 미치고 있는 중요한 열수력 현상 중의 하나이며, 지금까지 이 상유동의 현상에 대한 이해와 함께 정량적인 평가를 위하여 많은 실험과 모델링 및 수치계산이 이루어져 왔다.

특히, 물과 수증기의 이상유동은 주로 상변화(수증기의 응 축과 물의 비등)를 수반하게 되며, 그 체적분률 (volume fraction)에 따라 연속상(continuous field) 혹은 분산상(dispersed field) 등 다양한 형태로 존재한다. 이와 같은 액상과 기상의 이상유동에서는 상간의 경계면 즉 계면에서의 상간의 상호작 용이 매우 중요하다.

최근에 고정밀 CFD에서 사용되는 adaptive mesh, VOF, level-set 등의 기법[1-3]을 이용하여 상간의 경계를 포획 (capturing) 혹은 추적(tracking)하고자 하는 노력이 이루어지고 있다. 이와 같은 방법은 단일 액적 유동 혹은 매우 짧은 시간 (short-term) 동안의 과도현상 해석에 활용되고 있으나, 긴 시 간(mid or long-term) 동안의 과도현상을 해석하는데는 컴퓨터 성능의 한계로 활용에 제약을 받고 있다.

이상유동 해석에서 많이 사용되는 Euler-Euler 기법은 연속 상 뿐만 아니라 분산상에 대해서도 Eulerian 관점의 Navier-Stokes 방정식을 적용하여 해석한다. 분산상인 기포나 액적의 크기가 일정한 경우에는 계면의 면적을 그 상의 체적 분률을 이용하여 쉽게 구할 수 있기 때문에 이 방법은 매우 정확한 해를 구할 수 있다. 그러나 상변화가 있거나 기포의 상호 작용에 의하여 그 크기가 변하는 경우에는 계면을 예측 할 수 있는 모델이 요구된다.

일반적인 상용 CFD 코드에서는 액상과 기상에 대하여 하 나는 연속상으로 나머지 하나를 분산상으로 모델링하고 있다. CFX에서는 분산상(dispersed phase)에 대하여 기포(혹은 액적) 의 크기를 그룹화하여 표현하는 MUSIC 모델을 사용한다. 그 러나 이와 같은 2-field 기반 모델은 그 특성한 적용 범위가 제한적이라 할 수 있다. Kunz 등[4]은 물과 수증기에 대하여 각각 연속상과 분산상을 고려한 4-field 모델을 사용하였으며, Antal 등[5]은 기포 크기의 따라 상을 구분하여 해석하는 multi-field 개념을 이용하였다.

<sup>1</sup> 정회원, 한국원자력연구원

<sup>2</sup> 한국원자력연구원

<sup>\*</sup> Corresponding author, E-mail: ex-kjt@kaeri.re.kr

72

본 연구에서는 원자로에서 일어날 수 있는 다양한 이상유 동 현상에 대하여 해석이 가능한 수치해석 알고리즘을 개발 하는 것을 목적으로 하며, 이를 위하여 비정렬 격자 SIMPLE 기반한 다상유동 알고리즘에 수치해석 코드 CUPID-S(Component Unstructured Program for Interfacial Dynamics-based on SIMPLE algorithm)를 개발하였다. 원자로 열수력 거동 해석을 위하여 간단하면서 이상유동의 모든 유 동영역에 적용이 가능한 2유체(two-fluid) 3상(three-field) 방정 식[6]을 지배방정식으로 사용하였으며, 단상유동 해석에 주로 사용되어 온 SIMPLE 기법을 다상유동장 해석으로 확장하기 위하여 MCBA(Mass Conservation-Based Algorithm)[7] 알고리즘 을 적용하였다. 원자로 내부의 복잡한 형태에 대한 격자 생성 을 용이하게 하게 위하여 비정렬 혼합격자(hybrid mesh, 혹은 mixed element mesh)에 기반한 유한체적법으로 지배방정식을 이산화 하였다. 다상유동의 운동량 보존방정식에서 상 간의 운동량 전달은 수치적 안전성에 영향을 크게 미치는 것으로 알려져 있으며 이를 해결하기 위하여 상 간의 운동량방정식 을 연계하여 푸는 방법을 사용하였다.

본 논문에서는 비정렬격자 SIMPLE 알고리즘 기반 다상유 동 수치기법에 대하여 기술하고 그 수치기법을 검증하기 위 하여 상 분리(phase separation) 현상 및 압력 감소에 의한 비 등 현상에 대하여 수치해석을 수행하였다

## 2. 지배방정식 및 수치해법

상변화가 일어나는 다상 유동장의 해석을 위하여 본 연구 에서는, 수증기와 물의 2유체에 대하여 연속액상(continuous liquid phase), 액적상(droplets phase), 그리고 증기상(vapor phase)의 3상에 대한 해석 모델을 사용한다. 유동장의 압력은 상에 관계없이 동일하다고 가정하였다.

#### 2.1 2유체 3상 모델의 지배 방정식

증기상 v, 연속액상 l, 액적상 d에 대하여 k로 나타내면 각 상에 대한 연속방정식은 다음과 같은 형태로 표현된다.

$$\frac{\partial}{\partial t} (\alpha_k \rho_k) + \nabla \cdot (\alpha_k \rho_k \vec{u}_k) = S_{\alpha_k}$$

$$S_{\alpha_v} = \Gamma_v$$

$$S_{\alpha_i} = -(1 - \eta) \Gamma_v - S_E + S_D$$

$$S_{\alpha_d} = -\eta \Gamma_v + S_E - S_D$$
(1)

 $\alpha_{i}$ 는 각 상의 체적분율이며,  $\Gamma_{i}$ 는 상변화(증발-응축)에 의 한 질량생성율이다. S<sub>F</sub>와 S<sub>D</sub>는 증기에 의하여 연속액상에 서 액적이 생성되어 이탈하거나 반대로 액적이 연속액상에 포함되는 비율을 의미하며, η는 연속액상과 액적상에서 액적 상이 차지하는 비율을 나타낸다. 각 상에 대한 운동량방정식 은 다음과 같다.

$$\frac{\partial}{\partial t} (\alpha_k \rho_k \vec{u}_k) + \nabla \cdot (\alpha_k \rho_k \vec{u}_k \vec{u}_k) = -\alpha_k \nabla p + \nabla \cdot (\alpha_k \mathbf{T}_k) + \alpha_k \rho_k \vec{g} + \mathbf{M}_k^{mass} + \mathbf{M}_k^{drag} + \mathbf{M}_k^{VM}$$
(2)

CUPID-S 코드에서는 현재 상 간의 운동량 전달을 세 가지 로 모델링하였으며, 질량전달에 의한 운동량전달, 상 간의 마 찰(drag force)에 의한 운동량 전달, 그리고 상 간의 가속력의 차이(virtual mass force)에 의하여 발생하는 운동량전달 등을 포함한다. 유동장 내 열전달은 엔탈피로 표현된 식을 사용하 며, 특히 액적상과 연속액상은 열적평형(thermal equilibrium) 상태를 가정하였다.

$$\frac{\partial}{\partial t}(\alpha_{k}\rho_{k}h_{k}) + \nabla \cdot (\alpha_{k}\rho_{k}h_{k}\vec{u}_{k}) - \nabla \cdot (\alpha_{k}\vec{q}_{k})$$

$$= \alpha_{k}\mathbf{T}_{k}:\nabla \vec{u}_{k} + \alpha_{k}\frac{\partial p}{\partial t} + \alpha_{k}\vec{u}_{k}\cdot\nabla p + I_{k} + \alpha_{k}Q'''$$
(3)

지배방정식과 종속변수에 대한 계(system)의 닫힘(closure)를 위하여 상태방정식과 다음과 같은 보존식을 사용한다.

$$\sum_{k} \alpha_{k} = 1 \tag{4}$$

#### 2.2 지배방정식의 이산화

각 상에 대한 연속방정식, 에너지방정식, 그리고 각 좌표 성분의 운동량방정식은 일반적인 스칼라 수송방정식의 형태 로 표현된다.

$$\frac{\partial}{\partial t}\int \alpha_k \rho_k \phi_k \, d\Omega + \int \alpha_k \rho_k \phi_k \vec{u}_k \, d\vec{A} - \int \Gamma_k \nabla \phi_k \, d\vec{A} = \int S_{\phi_k} \, d\Omega \qquad (5)$$

대류 및 확산항은 Green-Gauss 정리에 의하여 체적적분을 면적적분으로 변환하였다. 적분형의 식 (5)는 유한체적법 (Finite Volume Metohd, FVM)으로 비정렬격자의 각 셀(cell)에 대하여 이산화(discretization)한다. 본 연구에서 다루고 있는 SIMPLE 계열의 알고리즘은 음해법(implicit method)을 기반으 로 지배방정식을 이산화하며, 여기서는 Euler 후방차분을 사 용하였다.

이산화된 방정식은 각 항 특히, 대류항의 비선형성으로 인 하여 안정적으로 수렴해를 구하기 어렵기 때문에 일반적으로 비정렬격자 상에서 2차 정확도로 대류항과 확산항을 이산화 하기 위하여 주로 내재적(implicit)으로 처리할 수 있는 항과 외재적(explicit)으로 처리할 수 있는 항을 구분하는 방식 (defered correction method)을 사용하고 있다.

본 연구에서는 변수의 증분 형태(delta form)의 이중시간 적 분법(dual-time integration)을 사용한다[10].

$$\frac{\partial}{\partial t} \int \alpha_k \rho_k \phi_k \, d\Omega + \frac{\partial}{\partial \tau} \int \alpha_k \rho_k \phi_k \, d\Omega + \int \alpha_k \rho_k \phi_k \vec{u}_k \, d\vec{A} = \int \Gamma_k \nabla \phi_k \, d\vec{A} + \int S_{\phi_k} \, d\Omega$$
(6)

식 (6)은 식 (5)에 가상시간(pseudo-time) 항을 더한 것으로 이중시간적분법의 기본이 된다. 이 방법으로 이산화된 방정식 은 좌변이 수치알고리즘을 내포하고 있는 반면, 지배방정식의 모든항을 포함하고 있는 우변은 방정식의 물리적 의미를 그 대로 내포하고 있기 때문에, 수치 알고리즘과 플럭스 스킴의 개선을 별개로 수행할 수 있고 코드의 유지보수가 매우 쉬워 압축성 공기역학 해석에서 많이 사용되어 왔다. 여기서는 선 행 연구에서 확립된 SIMPLE 알고리즘의 이중시간적분법을 다상유동 수치기법에 확장 적용하였다. 식 (6)의 각 항에 대 한 이산화는 참고문헌[8]에 기술되어있다.

각 셀 c0에 대하여 식 (6)을 이산화하면 식 (7) 형태의 산 술방정식을 얻는다.

$$\mathcal{A}_{c0}^{\phi_k} \,\delta\phi_{k,c0}^{m,n+1} + \sum_{cj(f)} \mathcal{A}_{cj}^{\phi_k} \,\delta\phi_{k,cj}^{m,n+1} = B_{c0}^{\phi_k} \tag{7}$$

여기서, cj는 셀 c0와 면 f를 공유하며 이웃한 셀을 의미한다. 상첨자 m은 가상시간단계 혹은 반복단계(iteration step)를 의 미하고 n은 물리시간단계를 나타낸다. δφ는 m+1 단계와 m 단계에서의 φ값의 차이를 의미한다. 각 셀에서 구해진 식 (7) 을 이웃한 셀의 식과 연립하면 행렬(matrix)로 표현된다.

#### 2.3 운동량방정식의 이산화

일반 수송방정식의 비정상항을 이산화할 때 체적분율과 밀 도를 시간지연하는 기법을 사용하였다. 이 방법은 상변화가 없는 일반적인 다상유동 해석에서 잘 작동하는 것으로 보인 다. 그러나 물-증기와 같이 상변화를 수반하는 이상유동에서 는 상변화에 의한 체적분율의 극심한 변화를 SIMPLE 알고리 즘과 같은 순차 해석기법에서는 잘 반영하지 못하는 것으로 보이며 이를 개선하기 위하여 식 (8)와같이 밀도와 체적분율 의 변화를 고려하였다.

$$\delta(\alpha_k \rho_k u_k)^m = (\alpha_k \rho_k)^m \delta u_k^m + u_k^m \delta(\alpha_k \rho_k)^m \tag{8}$$

제 ] 발표장

식 (8)을 이용하여 시간항 및 반복계산항을 선형화하여 x-운동량방정식에 대입하면 다음과 같이 식 (9)의 좌변에  $\delta(\alpha_k \rho_k)$ 의 항이 추가됨을 알 수 있다.

$$\left[\frac{(\alpha_{k}\rho_{k})^{m}}{\delta t} + \frac{(\alpha_{k}\rho_{k})^{m}}{\delta \tau}\right] \delta u_{k}^{m} + u_{k}^{m} \left[\frac{1}{\delta t} + \frac{1}{\delta \tau}\right] \delta (\alpha_{k}\rho_{k})^{m} + \nabla \cdot (\alpha_{k}\rho_{k}u_{k}\vec{u}_{k}) - \nabla \cdot (\alpha_{k}\vec{T}_{x,k}) + \alpha_{k}\frac{\partial p}{\partial x} \qquad (9)$$

$$= S_{u_{k}} - \frac{1}{\delta t} \left[ (\alpha_{k}\rho_{k}u_{k})^{m,n+1} - (\alpha_{k}\rho_{k}u_{k})^{n} \right]$$

이 식에서  $\overrightarrow{T_x}$ 는 x-운동량방정식의 전단력을 나타낸다.  $\delta(\alpha_k \rho_k)$ 에 관한 식을 얻기 위하여 각 상의 연속방정식을

식 (10)과 같이 시간에 대하여 이산화한다.

$$\begin{bmatrix} \frac{1}{\delta t} + \frac{1}{\delta \tau} \end{bmatrix} \delta(\alpha_k \rho_k)^m + \nabla \cdot (\alpha_k \rho_k \vec{u}_k)$$
  
=  $S_{\alpha_k} - \frac{1}{\delta t} \Big[ (\alpha_k \rho_k)^{n+1,m} - (\alpha_k \rho_k)^n \Big]$ (10)

참고로, 연속방정식에서 각 상의 체적분율을 구할 때는 밀 도를 시간지연하여 시용한 δα<sub>k</sub>에 관한 식을 사용한다. 식 (10)을 이용하여 식 (9)의 좌변 둘째 항을 치환하면 식 (11)의 운동량방정식을 얻는다.

$$\begin{bmatrix} \frac{(\alpha_{k}\rho_{k})^{m}}{\delta t} + \frac{(\alpha_{k}\rho_{k})^{m}}{\delta \tau} \end{bmatrix} \delta u_{k}^{m} + \nabla \cdot (\alpha_{k}\rho_{k}u_{k}\vec{u}_{k}) - \nabla \cdot (\alpha_{k}\vec{T}_{x,k})$$

$$= -\alpha_{k}\frac{\partial p}{\partial x} + S_{u_{k}} - \frac{1}{\delta t} \Big[ (\alpha_{k}\rho_{k}u_{k})^{m,n+1} - (\alpha_{k}\rho_{k}u_{k})^{n} \Big] \qquad (11)$$

$$- u_{k}^{m} \Big\{ -\frac{1}{\delta t} \Big[ (\alpha_{k}\rho_{k})^{n+1,m} - (\alpha_{k}\rho_{k})^{n} \Big] - \nabla \cdot (\alpha_{k}\rho_{k}\vec{u}_{k}) + S_{\alpha_{k}} \Big\}$$

이 식의 마지막 항은 시간지연기법으로 비정상항을 선형화 한 경우와 달리 반복계산 내에서 상변화에 의한 체적분율 변 화의 영향을 운동량방정식에서 고려함으로써 해의 안정성 (stability)에 크게 기여한다.

각 상간에서는 상의 경계에서 마찰, 상변화 등으로 운동량 전달이 일어나며 이 상간의 운동량 전달이 비선형적이며, 상 내에서의 대류와 확산보다 더 크게 영향을 미치는 경우가 있 기 때문에 이를 단순히 외재적으로 처리하는 경우에는 수렴 해를 얻는 것이 매우 어려워진다. 운동량방정식은 상간의 연 계가 매우 중요하며 이를 위하여 상간의 운동량 전달 항은

## 74 **제 1 발표장** 수치기법 I

내재적으로 처리한다. 본 연구에서 사용하고 있는 3상 모델에 대한 운동량방정식은 상 간의 운동량전달항에 의하여 상 간 의 연계(phasic coupling)가 이루어지고 대류항 및 확산항에 의 하여 공간에 대한 연계(spatial coupling)가 이루어진다. 3차원 3상 유동의 운동량방정식은 각 좌표성분의 운동량방정식이 상 간에 연계가 되어 각 셀에서 다음과 같은 형태의 산술방 정식을 얻는다.

$$\begin{pmatrix}
A_{v,c0}^{u_{v}} & A_{l,c0}^{u_{v}} & A_{d,c0}^{u_{v}} \\
A_{v,c0}^{u_{v}} & A_{l,c0}^{u_{d}} & A_{d,c0}^{u_{d}} \\
A_{v,c0}^{u_{d}} & A_{l,c0}^{u_{d}} & A_{d,c0}^{u_{d}}
\end{pmatrix} \begin{bmatrix}
\delta u_{v,c0}^{m,n+1} \\
\delta u_{l,c0}^{m,n+1} \\
\delta u_{d,c0}^{m,n+1}
\end{bmatrix} + \sum_{f(c)} \begin{pmatrix}
A_{cj}^{u_{v}} & 0 & 0 \\
0 & A_{cj}^{u_{l}} & 0 \\
0 & 0 & A_{cj}^{u_{d}}
\end{bmatrix} \begin{bmatrix}
\delta u_{v,cj}^{m,n+1} \\
\delta u_{d,cj}^{m,n+1} \\
\delta u_{d,cj}^{m,n+1}
\end{bmatrix}$$

$$= \begin{bmatrix}
B_{c0}^{u_{v}} \\
B_{c0}^{u_{d}} \\
B_{c0}^{u_{d}}
\end{bmatrix} - \begin{bmatrix}
\alpha_{v}^{n+1,m} \\
\alpha_{l}^{n+1,m} \\
\alpha_{l}^{n+1,m}
\end{bmatrix} \left(\Omega \frac{dp}{dx}\right)_{c0}^{m,n+1}$$
(12)

### 2.4 속도수정성분과 압력수정성분의 관계식

SIMPLE 계열의 알고리즘에서는 운동량방정식을 계산할 때 m단계의 압력값을 사용하기 때문에 질량보존을 만족하지 않는 속도를 얻게 된다. 이를 보정하기 위하여 (m+1) 단계 압 력을 이용한 산술 운동량 방정식에서 식 (12)를 빼면 다음과 같은 속도 수정식을 얻는다.

$$\underline{\underline{A}_{c0}^{u}}\underline{\underline{u}_{c0}^{\prime}} + \sum_{f(cj)} \underline{\underline{A}_{cj}^{u}}\underline{\underline{u}_{cj}^{\prime}} = -\underline{\underline{\alpha}_{c0}} \left(\Omega \frac{dp^{\prime}}{dx}\right)_{c0}$$
(13)

여기서  $p^{m+1} - p^m = p'$ 로 나타내었다.

식 (13)에서 셀 c0의 압력수정 성분은 c0 셀과 그 이웃하는 셀의 속도수정 성분으로 표현되므로, 이 식을 연속방정식에 대입하면 압력수정 방정식은 풀기가 불가능해지므로 SIMPLE 알고리즘에서는  $u'_{cj} \approx 0$  이라는 가정을 사용하여 위 식에서 공간적 연계를 제거한다. 이 가정을 이용하면 SIMPLE 알고리 즘의 다상유동을 위한 속도수정과 압력수정의 관계식을 얻는 다.

$$\underline{\underline{A}}_{\underline{c}0}^{u} \underline{\underline{u}}_{\underline{c}0}^{\prime} = -\underline{\underline{\alpha}}_{\underline{c}0} \left( \Omega \frac{dp'}{dx} \right)_{\underline{c}0}$$

$$\underline{\underline{u}}_{\underline{c}0}^{\prime} = -\left(\underline{\underline{A}}_{\underline{c}0}^{u}\right)^{-1} \underline{\underline{\alpha}}_{\underline{c}0} \left( \Omega \frac{dp'}{dx} \right)_{\underline{c}0} = -\underline{\underline{H}}_{\underline{c}0} \left( \Omega \frac{dp'}{dx} \right)_{\underline{c}0}$$
(14)

단상유동의 SIMPLEC 알고리즘에서는  $u'_{cj} \approx u'_{a0}$ 라는 가 정을 사용하며, 이것을 식 (15)에 적용하면 SIMPLEC 알고리 즘의 다상유동을 위한 속도수정과 압력수정의 관계식을 얻는 다.

$$\left(\underline{A}_{c0}^{u} + \sum_{f(g)} \underline{A}_{cj}^{u}\right) \underline{u}_{c0}^{\prime} = -\underline{\alpha}_{c0} \left(\Omega \frac{dp'}{dx}\right)_{c0}$$
$$\underline{u}_{c0}^{\prime} = -\left(\underline{A}_{c0}^{u} + \sum_{f(g)} \underline{A}_{cj}^{u}\right)^{-1} \underline{\alpha}_{c0} \left(\Omega \frac{dp'}{dx}\right)_{c0} = -\underline{H}_{c0} \left(\Omega \frac{dp'}{dx}\right)_{c0}$$
(15)

#### 2.5 압력수정방정식

운동량방정식의 압력항을 전단계의 값을 사용함으로써 운 동량방정식으로부터 얻은 속도는 연속방정식을 만족하지 못 하며 이 속도를 보정하기 위하여 압력수정방정식을 유도하여 사용한다. 다상유동 해석을 위한 압력수정방정식을 유도하는 데는 질량보존기반(mass conservation-based algorithm MCBA)과 체적보존기반(geometric conservation-based algorithm GCBA)[9] 알고리즘으로 나뉘어지며 본 연구에서는 질량보존기반의 MCBA를 사용하여 유도하였다.

MCBA에서는 각 상의 연속방정식을 합산한 방정식을 사용 한다. 특히, 물과 수증기는 밀도차가 매우 크기 때문에 단순 히 각 상의 연속방정식을 합산하는 방법은 밀도가 상대적으 로 매우 큰 상의 영향이 지배적으로 나타난다. 이를 보완하기 위하여 각상의 기준 밀도로 정규화(normalize)한 연속방정식을 합산하는 방법을 사용하였다.

$$\sum_{k=v,l,d} \frac{1}{\rho_{k,ref}} \left\{ \Omega \frac{\partial}{\partial t} (\alpha_k \rho_k) + \sum_f (\alpha_k \rho_k \vec{u}_k A)_f - \Omega S_{\alpha_k} \right\} = 0 \quad (16)$$

식 (16)에서 각 상의 밀도와 속도를 다음과 같이 계산된 (known) 값과 수정값으로 구분하면 비정상항과 대류 플럭스 를 다음과 같이 선형화할 수 있다.

$$\rho_k^* = \rho_k^m + \rho_k' \tag{17}$$

$$u_k^{m+1} = u_k^* + u_k' \tag{18}$$

$$\Omega \frac{\partial}{\partial t} (\alpha_k \rho_k) = \frac{\Omega}{\delta t} (\alpha_k^{m,n+1} \rho_k^{*,n+1} - \alpha_k^n \rho_k^n)$$

$$= \frac{\Omega}{\delta t} \alpha_k^{m,n+1} \rho_k' + \frac{\Omega}{\delta t} \alpha_k^{m,n+1} \rho_k^{m,n+1} - \frac{\Omega}{\delta t} \alpha_k^n \rho_k^n$$
(19)

$$\rho_{k}^{*,n+1}u_{k}^{m+1,n+1} = (\rho_{k}^{m,n+1} + \rho_{k}')(u_{k}^{*,n+1} + u_{k}')$$

$$\approx \rho_{k}^{m,n+1}u_{k}^{*,n+1} + \rho_{k}^{m,n+1}u_{k}' + \rho'u_{k}^{*,n+1}$$
(20)

식 (19), (20)을 식 (16)에 대입하면 다음과 같은 합산 연속 방정식을 얻는다.

$$\sum_{k=\nu,l,d} \frac{1}{\rho_{k,ref}} \left\{ \frac{\Omega}{\delta t} \alpha_{k}^{m} \rho_{k}^{\prime} + \sum_{f} (\alpha_{k}^{m} \rho^{\prime} U_{k}^{*})_{f} + \sum_{f} (\alpha_{k}^{m} \rho_{k}^{m} U_{k}^{\prime})_{f} \right\}$$

$$= -\sum_{k=\nu,l,d} \frac{1}{\rho_{k,ref}} \left\{ \frac{\Omega}{\delta t} (\alpha_{k}^{m} \rho_{k}^{m} - \alpha_{k}^{n} \rho_{k}^{n}) + \sum_{f} (\alpha_{k}^{m} \rho_{k}^{m} U_{k}^{*})_{f} - \Omega S_{k}^{\alpha} \right\}$$
(21)

밀도수정값인 ρ'은 chain-rule을 이용하여 압력수정값으로 치환하고 속도수정값은 앞에서 구한 식 (14), (15)를 이용하여 압력수정값으로 치환한다.

$$\rho'_k = \frac{d\rho_k}{dp} p' = C_{p,k} p' \tag{22}$$

$$u'_{k} = -H_{k} \frac{dp'}{dx}, \quad \vec{u}'_{k} = -H_{k} \nabla p' \tag{23}$$

$$U_{k,f}' = \left(\vec{u}_k'\vec{A}\right)_f = -\left(H_k \nabla p'\vec{A}\right)_f \tag{24}$$

식 (22), (23), (24)를 식 (21)에 대입하면 식 (25)와 같은 압 력수정방정식을 얻는다.

$$\sum_{k=\nu,l,d} \frac{1}{\rho_{k,ref}} \left\{ \frac{\Omega}{\delta t} \alpha_k^m C_{p,k} p' + \sum_f (\alpha_k^m C_{p,k} p' U_k^*)_f - \sum_f (\alpha_k^m \rho_k^m H_k \nabla p' \vec{A})_f \right\}$$

$$= -\sum_{k=\nu,l,d} \frac{1}{\rho_{k,ref}} \left\{ \frac{\Omega}{\delta t} \left( \alpha_k^m \rho_k^m - \alpha_k^n \rho_k^n \right) + \sum_f (\alpha_k^m \rho_k^m U_k^*)_f - \Omega S_k^a \right\}$$
(25)

밀도 변화를 고려한 압축성 다상유동의 압력수정방정식인 식 (25)는 이산화된 일반 수송방정식과 같은 형태를 갖는다. 이 식의 우변은 각 상의 연속방정식을 그대로 나타내고 있으 며, 좌변의 첫째 항은 비정상항으로 둘째 항은 대류항, 셋째 항은 확산항의 역할을 한다. 좌변의 둘째 항은 상류차분을 이 용하여 구하다.

$$(\alpha_{k}^{m}C_{p,k}p'U_{k}^{*})_{f} = \max(U_{k,f}^{*})(\alpha_{k}C_{p,k})_{c0}^{m}p_{c0}' + \min(U_{k,f}^{*})(\alpha_{k}C_{p,k})_{cj}^{m}p_{cj}'$$
(26)

압력수정방정식의 좌변 셋째 항은 확산항의 이산화와 마찬 가지로 두 개의 성분으로 나누어 표현할 수 있다.

$$(\alpha_{k}^{m}\rho_{k}^{m}H_{k}\nabla p'\vec{A})_{f} = (\alpha_{k}^{m}\rho_{k}^{m}H_{k})_{f}\left\{(p_{cj}'-p_{c0}')\frac{A_{f}}{ds\cdot\hat{n}} + \left[\overline{\nabla p'}\cdot\vec{A}_{f} - \left(\overline{\nabla p'}\cdot\overline{ds}\right)\frac{A_{f}}{ds\cdot\hat{n}}\right]\right\}$$
(27)

 제 l 발표장
 75

 수치기법 I
 •

셀의 면적 벡터  $\overrightarrow{A}$ 가 그 면에 이웃하는 두 셀의 중심을 잇 는 변위 벡터  $\overrightarrow{ds}$ 와 평행한 찌그러짐(skewness)이 없는 격자에 서는 식 (27)의 우변은 그 첫째항만 존재하지만 일반적으로 격자의 찌그러짐이 있는 경우 둘째 항이 의미 있는 값을 가 지게 된다. 알반적인 격자에서는 이 둘째 항의 크기는 첫째 항의 크기와 비교하여 미미하고 SIMPLE 알고리즘에서는 해 가 수렴함에 따라 압력수정값이 0이 되기 때문에 이 둘째 항 을 생략하여도 해의 정확도에는 영향을 미치지 않으므로 식 (28)과 같이 근사하여 사용한다.

$$(\alpha_k^m \rho_k^m H_k \nabla p' \vec{A})_f \approx \left(\alpha_k^m \rho_k^m H_k \frac{A}{\vec{ds} \cdot \hat{n}}\right)_f (p'_{cj} - p'_{c0})$$
(28)

식 (25)를 각 항별로 이산화하여 대입하면 다음과 같은 압 력수정식의 산술방정식을 얻는다.

$$A_{c0}^{p} p_{c0}' + \sum_{f(cj)} A_{cj}^{p} p_{cj}' = B_{c0}^{p}$$
<sup>(29)</sup>

#### 2.6 에너지방정식

본 연구에서는 엔탈피 형태의 에너지 보존방정식을 사용하 며, 특히 연속액상과 액적상에 대해서는 열적평형을 가정하여 증기상 및 연속액상·액적상의 두 개의 에너지 방정식을 푼다. 다상유동장은 상 간의 상호작용이 매우 긴밀한데, 특히 상변 화를 수반하는 경우 어느 한 상의 총 에너지 증가는 단순히 엔탈피의 증가뿐만 아니라 그 상의 체적분율의 증가와도 관 계가 있다. SIMPLE 알고리즘과 같이 각각의 방정식을 순차적 으로 해결하는 방법에서는 체적분율, 에너지, 속도의 연계가 동시해법(coupled algorithm)에 비하여 약하기 때문에 상변화를 수반하는 다상유동장 해석을 매우 불안정하게 만들 수 있다. 본 연구에서는 상변화가 있는 경우 에너지방정식도 운동량방 정식과 마찬가지로 비정상항의 이산화 시에 α<sub>k</sub>ρ<sub>k</sub>를 선형화 에 포핚시키는 방법을 사용하다.

에너지방정식에서 구한 엔탈피로부터 각 상의 온도, 밀도 및 열전도와 같은 물성치들은 참고문헌[9]에서 개발된 증기표 (steam table) 함수를 이용하여 구한다.

## 3. 검증 계산

SIMPLE 알고리즘 기반 다상유동 해석기법을 검증하기 위 하여 밀폐된 공간 내에서 상 분리(phase separation) 현상, 파이 프 내에서 감압에 의한 상변화 현상을 모의하였다.



Fig. 1 Progress of phasic volume fractions and velocity fileds along time for a phase separation in a square chamber, left: liquid phase, right: vapor phase

#### 3.1 상 분리(phase separation) 현상 해석

상 분리 현상은 초기에 동일한 체적분율로 이상적으로 섞 여 있는 포화상태의 물과 수증기가 시간이 진행함에 따라 밀 도차에 의하여 물은 아래로 내려가고 수증기는 상부로 올라 가서 최후에는 두 상이 완전히 분리되는 과정으로 다상유동 의 매우 중요한 현상 중에 하나이다. 이 상 분리 문제는 시간 에 따라 상 간의 경계면이 생성되어 전파되어 가면서 2상에 서 단상으로 변하기 때문에 본론의 수치기법에서 기술한 바 와 같이 체적분율이 0이 되어 각 상의 방정식이 위치에 따라 특이점에 놓이게 되는 수치해석 상 어려운 문제 중의 하나이 다. 본 연구에서 개발된 CUPID-S 코드의 검증을 위하여 2차 원 정사각 챔버 및 길이 2 m의 수직관에 대하여 수치계산을 수행하였다.

가로 세로 길이 1m×1m의 2차원 정사각 챔버 내의 상 분리 문제를 계산하기 위하여 400개의 사각 셀로 구성된 격 자를 생성하여 사용하였으며, 초기 속도가 0인 물과 수증기는 1기압의 포화상태에 있으며 벽면은 단열과 미끄럼(slip) 조건 을 사용하였다. 이 문제에서 정수압에 의한 포화온도의 상승 과 이에 따른 수증기의 응축은 고려하지 않았다. Fig. 1은 시 간에 따라 상이 분리되는 현상을 물과 증기의 체적분율 분포 를 이용하여 나타내었다. 물은 위에서부터 서서히 아래로 내 려오고, 증기는 아래에서부터 위로 올라가는 것을 알 수 있으 며, 10초 후에는 두 상이 완전히 분리되어 있음을 알 수 있



Fig. 2 Phase separation in a vertical pipe, comparison of the vapor-liquid interface propagation between numerical and analytical solutions

다. 본 수치계산을 통하여 CUPID-S 가 다상 영역뿐만 아니라 단상 영역에서도 문제없이 계산이 됨을 알 수 있다.

수직 파이프 내 정지한 물과 증기의 2상 혼합유체의 상 분 리 문제는 상 간의 마찰력과 중력에 의한 체력만을 고려하여 해석해를 구할 수 있다[10]. 해석적인 방법으로 구한 증기와 물의 경계면의 전파속도를 본 연구에서 개발된 수치기법으로 계산하여 비교함으로써 본 수치기법의 정확도를 평가하였다. 길이 2 m의 수직관에 대하여 반경방향으로 1개의 셀, 길이 방향으로 500개의 셀을 사용하여 수치계산을 수행하였으며, 초기 조건은 2차원 챔버 내에서의 상 분리 문제와 같다.

Fig. 2는 파이프의 길이 방향으로 증기상의 체적분율을 보 여주는 것으로 시간에 따른 변화를 해석해와 비교하였다. 파 이프의 위와 아래에서부터 상이 분리되면서 만들어진 두 개 의 상 경계면이 서로 반대방향으로 이동하고 있음을 알 수 있다. 본 연구의 수치해법이 상 간의 경계면을 매우 선명하게 포획하고 있고 경계면의 전파속도도 해석해와 잘 일치하고 있다. Fig. 3은 계산 시작 2초와 6초 경과 후에 증기상의 체적 분율 분포로, 중력에 의하여 상이 분리되면서 생성된 경계면 의 이동을 보여주고 있다.

#### 3.2 2차원 채널 내에서 플래싱 유동

감압에 의하여 물이 비등하는 플래싱(flashing) 현상은 원자 로에서 매우 중요한 열수력 현상 중의 하나이다. 개발된 CUPID-S 코드가 이 플래싱 현상을 잘 모의 할 수 있는지를 파악하기 위하여 2차원의 개념적 문제를 사용하여 해석을 수 행하였다. 높이가 0.1 m이고 길이가 2 m인 수평 파이프에 대 하여 Fig. 4(a)와 같은 사각 격자를 생성하여 사용하였다. 사 용된 격자의 총 셀 수는 250 개이며, 왼쪽 입구에서 4.0 m/s 의 속도로, 온도 450 K, 압력 1 MPa의 물이 유입된다. 초기





Fig. 3 Phase separation in a vertical pipe, vapor volume fractions at 2 s and 6 s



Fig. 4 Calculation of the flashing in a 2-D channel (a) 2-D mesh, (b) Pressure distribution

10초 동안 출구의 압력은 1 MPa에서 0.854 MPa로 서서히 내 려가서 그 후 압력은 유지된다. 압력이 1 MPa과 0.854 MPa 에서 포화온도는 각각 453.04 K와 446.27 K로, 유동장은 초기 에 과냉 상태에서 출구 압력이 낮아짐에 따라 플래싱에 의하 여 2상유동이 형성된다.

과도해석의 초기 10초 동안 2차원 채널 내에서는 단상의 물이 플래싱에 의하여 2상의 기상·액상 혼합 유동으로 변화하 였으며, 약 13초 후에 정상상태에 도달하였다. Fig. 4 (b)는 13 초에서 압력장의 분포 보여준다. Fig. 5에서 보는 바와 같이 채널 입구 부근에서 급격한 상변화가 이루어짐을 알 수 있다. 채널의 후반부에서는 각 상의 체적 분율은 거의 변화하지 않 으며 증기상의 체적 분율은 약 0.6에 도달하는 것으로 나타났 다. 감압에 의한 물의 증발율  $\Gamma_v$ 는 상 간의 계면(interfacial) 열전달 계수에 의하여 달라질 수 있으며 본 연구에서는 수치 알고리즘의 평가를 위하여 단순하게 1 차원 시스템 코드의 계산에서 얻어진 값을 상수로 사용하였다. 출구에서의 증기의 체적분율은 시스템 코드 해석결과와 유사한 값으로 나타났으 며, 상변화에 대한 정량적인 평가는 정교한 계면 열전달 모



Fig. 5 Flashing in a 2-D channel, distributions of the water and vapor volume fractions along the channel



Fig. 6 Flashing in a 2-D channel, distributions of the water and vapor temperatures along the channel



Fig. 7 Flashing in a 2-D channel, distributions of the water and vapor velocities along the channel

델을 도입한 후 논의하기로 한다.

채널의 길이 방향으로 각 상의 온도본포를 Fig. 6에 나타 내었으며, 각 상의 온도를 각 지점에서의 압력에 따른 포화 온도와 비교하였다. 채널 입구 부근에서는 물이 과열 상태로 있으며, 이로 인하여 급격한 증발이 발생함을 알 수 있다. 특 히 채널의 중반 이후부터는 물과 증기의 온도가 포화 온도와

### <u>78 제 1 발표장</u> 수치기법 I

같아지며, 이로 인하여 Fig. 5에서 보는 것처럼 각 상의 체적 분율이 변화하지 않게 됨을 알 수 있다. Fig. 7은 채널 내 주 유동 방향의 속도 분포를 보여 주는 것으로 채널 입구 부근 에서 급격히 생성된 증기가 가속되면서 마찰력에 의하여 물 을 견인하고 있고 채널의 출구로 가면서 점차적으로 증기와 물의 속도가 같아지는 것을 알 수 있다. 채널 내 감압에 의한 물의 증발 현상인 플래싱에 대하여 CUPID-S 코드로 계산을 수행하고 압력, 온도분포를 분석하여 상변화가 물리적으로 타 당하게 모의되고 있는 것으로 보여진다.

## 4. 결 론

본 연구에서는 복잡한 형상의 원자로 컴포넌트 내부의 2-유체 3-상 유동장 해석을 위하여 SIMPLE 알고리즘과 비정렬 격자 유한체적법에 기반한 수치해석 코드를 개발하였으며, 원 자력분야 열수력의 중요한 현상에 대하여 적용하여, 개발된 수치기법의 타당성을 평가하였다.

본 연구에서 개발된 수치기법은 과도 상태 다상유동 해석 에서 정성적으로 타당한 계산결과를 만들어 내는 것으로 평 가되며, 앞으로 난류 모델, 계면 전달 모델 등, 다상유동 해석 을 위한 여러 모델을 도입하여 코드를 개선할 계획이다.

# 후 기

본 연구는 교육과학기술부의 원자력연구개발 중장기 사업 일환으로 수행되었습니다.

### 참고문헌

[1] 2005, Dai, M. and Schmidt, D.P., "Adaptive tetrahedral

meshing in free-surface flow," J. of Comp. Phys., Vol.208, pp.228-252.

- [2] 1999, Scardovelli, R. and Zaleski, S., "Direct numerical simulation of free-surface and interfacial Flow", *Annual Review of Fluid Mechanics*, Vol.31, pp.567-603.
- [3] 2005, Yu, J., Sakai. S. and Sethian, J., "A coupled quadrilateral grid level set projection method applied to ink jet simulation," J. of Comp. Phys., Vol.206, pp.227-251.
- [4] 1998, Kunz, R., et al., "A Coupled Phasic Exchange Algorithm for Three-dimensional Multi-field Analysis of Heated Flows with Mass Transfer," *Computers & Fluids*, Vol.27, No.7, pp.741-768.
- [5] 2000, Antal, S.P., et al., "Development of a Next Generation Computer Code for the Prediction of Multicomponent Multiphase Flows," Int. Meeting on Trends in Numerical and Physical Modeling for Industrial Multiphase Flow.
- [6] 2007, Jeong, J.J., et al., "Hydrodynamic Solver for a Transient, Two-fluid, Three-field Model on Unstructured Grids," 한국전산유체공학회, 12권 4호, pp.44-53.
- [7 Darwish, M., Moukalled, F. and Sekar, B., 2001, "A Unified Formulation of the Segregated Class of Algorithm for Multifluid Flow at All Speeds," *Numerical Heat Transfer B*, Vol.40, pp.99-137
- [8] 2006, 김종태, 탁남일, 김상백, 김민환, 이원재, "이중시간 적분법을 이용한 순차적 유동해석 기법," 한국전산유체공 학회 추계학술회의 논문집, pp.31-35.
- [9] 2002, 김수형, 김희철, "IAPWS-IF97을 이용한 증기표 프 로그램," 한국원자력연구원 기술보고서 KAERI /TR-2314/2002.
- [10] 2006, Stadke, H., Gasdynamic Aspects of Two-Phase Flow, Wiley-VCH Verlag GmbH & Co..