• Title/Summary/Keyword: Multi-Objective Optimization approach

Search Result 167, Processing Time 0.021 seconds

Simultaneous Optimum Design of Hybrid Structural Control System (복합구조제어시스템의 동시최적설계)

  • 박관순;고현무
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.37-43
    • /
    • 2002
  • In this paper, an integrated optimum design method for hybrid structural control system is studied. Not only the distribution and the capacity of passive devices but also those of active devices, and the controllers are treated as design variables in the proposed approach. Multi-objective optimization problem is formulated by using the preference function, which is newly defined in this study. Genetic algorithm is adopted as a numerical searching technique in order to simultaneously find the optimum solutions. The validity of the proposed method is verified through the example designs and the numerical simulations of an earthquake excited multi-degrees-of-freedom structure.

Analyzing the bearing capacity of shallow foundations on two-layered soil using two novel cosmology-based optimization techniques

  • Gor, Mesut
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.513-522
    • /
    • 2022
  • Due to the importance of accurate analysis of bearing capacity in civil engineering projects, this paper studies the efficiency of two novel metaheuristic-based models for this objective. To this end, black hole algorithm (BHA) and multi-verse optimizer (MVO) are synthesized with an artificial neural network (ANN) to build the proposed hybrid models. Based on the settlement of a two-layered soil (and a shallow footing) system, the stability values (SV) of 0 and 1 (indicating the stability and failure, respectively) are set as the targets. Each model predicted the SV for 901 stages. The results indicated that the BHA and MVO can increase the accuracy (i.e., the area under the receiving operating characteristic curve) of the ANN from 94.0% to 96.3 and 97.2% in analyzing the SV pattern. Moreover, the prediction accuracy rose from 93.1% to 94.4 and 95.0%. Also, a comparison between the ANN's error decreased by the BHA and MVO (7.92% vs. 18.08% in the training phase and 6.28% vs. 13.62% in the testing phase) showed that the MVO is a more efficient optimizer. Hence, the suggested MVO-ANN can be used as a reliable approach for the practical estimation of bearing capacity.

Robust parameter set selection of unsteady flow model using Pareto optimums and minimax regret approach (파레토 최적화와 최소최대 후회도 방법을 이용한 부정류 계산모형의 안정적인 매개변수 추정)

  • Li, Li;Chung, Eun-Sung;Jun, Kyung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.191-200
    • /
    • 2017
  • A robust parameter set (ROPS) selection framework for an unsteady flow model was developed by combining Pareto optimums obtained by outcomes of model calibration using multi-site observations with the minimax regret approach (MRA). The multi-site calibration problem which is a multi-objective problem was solved by using an aggregation approach which aggregates the weighted criteria related to different sites into one measure, and then performs a large number of individual optimization runs with different weight combinations to obtain Pareto solutions. Roughness parameter structure which can describe the variation of Manning's n with discharges and sub-reaches was proposed and the related coefficients were optimized as model parameters. By applying the MRA which is a decision criterion, the Pareto solutions were ranked based on the obtained regrets related to each Pareto solution, and the top-rated one due to the lowest aggregated regrets of both calibration and validation was determined as the only ROPS. It was found that the determination of variable roughness and the corresponding standardized RMSEs at the two gauging stations varies considerably depending on the combinations of weights on the two sites. This method can provide the robust parameter set for the multi-site calibration problems in hydrologic and hydraulic models.

Integrated Optimal Design of Hybrid Structural Control System using Multi-Stage Goal Programming Technique (다단계 목표계획법을 이용한 복합구조제어시스템의 통합최적설계)

  • 박관순;고현무;옥승용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.93-102
    • /
    • 2003
  • An optimal design method for hybrid structural control system of building structures subject to earthquake excitation is presented in this paper. Designing a hybrid structural control system may be defined as a process that optimizes the capacities and configuration of passive and active control systems as well as structural members. The optimal design proceeds by formulating the optimization problem via a multi-stage goal programming technique and, then, by finding reasonable solution to the optimization problem by means of a goal-updating genetic algorithm. In the multi-stage goal programming, design targets(or goals) are at first selected too correspond too several stages and the objective function is th n defined as the sum of the normalized distances between these design goals and each of the physical values, that is, the inter-story drifts and the capacities of the control system. Finally, the goal-updating genetic algorithm searches for optimal solutions satisfying each stage of design goals and, if a solution exists, the levels of design goals are consecutively updated to approach the global optimal solution closest too the higher level of desired goals. The process of the integrated optimization design is illustrated by a numerical simulation of a nine-story building structure subject to earthquake excitation. The effectiveness of the proposed method is demonstrated by comparing the optimally designed results with those of a hybrid structural control system where structural members, passive and active control systems are uniformly distributed.

Constellation Multi-Objective Optimization Design Based on QoS and Network Stability in LEO Satellite Broadband Networks

  • Yan, Dawei;You, Peng;Liu, Cong;Yong, Shaowei;Guan, Dongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1260-1283
    • /
    • 2019
  • Low earth orbit (LEO) satellite broadband network is a crucial part of the space information network. LEO satellite constellation design is a top-level design, which plays a decisive role in the overall performance of the LEO satellite network. However, the existing works on constellation design mainly focus on the coverage criterion and rarely take network performance into the design process. In this article, we develop a unified framework for constellation optimization design in LEO satellite broadband networks. Several design criteria including network performance and coverage capability are combined into the design process. Firstly, the quality of service (QoS) metrics is presented to evaluate the performance of the LEO satellite broadband network. Also, we propose a network stability model for the rapid change of the satellite network topology. Besides, a mathematical model of constellation optimization design is formulated by considering the network cost-efficiency and stability. Then, an optimization algorithm based on non-dominated sorting genetic algorithm-II (NSGA-II) is provided for the problem of constellation design. Finally, the proposed method is further evaluated through numerical simulations. Simulation results validate the proposed method and show that it is an efficient and effective approach for solving the problem of constellation design in LEO satellite broadband networks.

Conceptual Design Trade Offs between Solid and Liquid Propulsion for Optimal Stage Configuration of Satellite Launch Vehicle

  • Qasim, Zeeshan;Dong, Yunfeng
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.283-292
    • /
    • 2008
  • The foremost criterion in the design of a Satellite Launch Vehicle(SLV) is its performance capability to boost the designated payload to the desired mission orbit; it starts from focusing on the SLV configuration to achieve the velocity requirements($}\Delta}V$) for the mission. In this paper we review an analytical approach which is suitable enough for preliminary conceptual design and is used previously to optimize stage configurations for Two Stage to Orbit SLV for Low Earth Orbit(LEO) Missions; we have extended this approach to Three Stage to Orbit SLV and compared different propellant options for the mission. The objective is to minimize the Gross Lift off Weight(GLOW). The primary performance figures of merit were the total inert weight of the SLV and the payload weight that the SLV could lift into LEO, given candidate propulsion systems. The optimization is achieved by configuring the $}\Delta}V$ between stages. A comparison of configurations of single-stage and multi-stage SLVs is made for different propellants. Based upon the optimized stage configurations a comparative performance analysis is made between Liquid and Solid fueled SLV. A 3 degree of freedom trajectory-analysis program is modeled in SIMULINK and used to conduct the performance analysis. Furthermore, a cost analysis is performed on our stage optimized SLVs. The cost estimation relationships(CER) used give us a comparison of development and fabrication costs for the Liquid vs. Solid fueled SLV in man years. The pros and cons of the production, operation ability, performance, responsiveness, logistics, price, shelf life, storage etc of both Solid and Liquid fueled SLVs are discussed. The statistics and data are used from existing or historical(real) SLV stages.

  • PDF

Adaptive Learning Path Recommendation based on Graph Theory and an Improved Immune Algorithm

  • BIAN, Cun-Ling;WANG, De-Liang;LIU, Shi-Yu;LU, Wei-Gang;DONG, Jun-Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2277-2298
    • /
    • 2019
  • Adaptive learning in e-learning has garnered researchers' interest. In it, learning resources could be recommended automatically to achieve a personalized learning experience. There are various ways to realize it. One of the realistic ways is adaptive learning path recommendation, in which learning resources are provided according to learners' requirements. This paper summarizes existing works and proposes an innovative approach. Firstly, a learner-centred concept map is created using graph theory based on the features of the learners and concepts. Then, the approach generates a linear concept sequence from the concept map using the proposed traversal algorithm. Finally, Learning Objects (LOs), which are the smallest concrete units that make up a learning path, are organized based on the concept sequences. In order to realize this step, we model it as a multi-objective combinatorial optimization problem, and an improved immune algorithm (IIA) is proposed to solve it. In the experimental stage, a series of simulated experiments are conducted on nine datasets with different levels of complexity. The results show that the proposed algorithm increases the computational efficiency and effectiveness. Moreover, an empirical study is carried out to validate the proposed approach from a pedagogical view. Compared with a self-selection based approach and the other evolutionary algorithm based approaches, the proposed approach produces better outcomes in terms of learners' homework, final exam grades and satisfaction.

Reviews of Bus Transit Route Network Design Problem (버스 노선망 설계 문제(BTRNDP)의 고찰)

  • Han, Jong-Hak;Lee, Seung-Jae;Lim, Seong-Su;Kim, Jong-Hyung
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.35-47
    • /
    • 2005
  • This paper is to review a literature concerning Bus Transit Route Network Design(BTRNDP), to describe a future study direction for a systematic application for the BTRNDP. Since a bus transit uses a fixed route, schedule, stop, therefore an approach methodology is different from that of auto network design problem. An approach methodology for BTRNDP is classified by 8 categories: manual & guideline, market analysis, system analytic model. heuristic model. hybrid model. experienced-based model. simulation-based model. mathematical optimization model. In most previous BTRNDP, objective function is to minimize user and operator costs, and constraints on the total operator cost, fleet size and service frequency are common to several previous approach. Transit trip assignment mostly use multi-path trip assignment. Since the search for optimal solution from a large search space of BTRNDP made up by all possible solutions, the mixed combinatorial problem are usually NP-hard. Therefore, previous researches for the BTRNDP use a sequential design process, which is composed of several design steps as follows: the generation of a candidate route set, the route analysis and evaluation process, the selection process of a optimal route set Future study will focus on a development of detailed OD trip table based on bus stop, systematic transit route network evaluation model. updated transit trip assignment technique and advanced solution search algorithm for BTRNDP.

Cable damage identification of cable-stayed bridge using multi-layer perceptron and graph neural network

  • Pham, Van-Thanh;Jang, Yun;Park, Jong-Woong;Kim, Dong-Joo;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.241-254
    • /
    • 2022
  • The cables in a cable-stayed bridge are critical load-carrying parts. The potential damage to cables should be identified early to prevent disasters. In this study, an efficient deep learning model is proposed for the damage identification of cables using both a multi-layer perceptron (MLP) and a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), which is a robust program for modeling and analyzing bridge structures with low computational costs. The model based on the MLP and GNN can capture complex nonlinear correlations between the vibration characteristics in the input data and the cable system damage in the output data. Multiple hidden layers with an activation function are used in the MLP to expand the original input vector of the limited measurement data to obtain a complete output data vector that preserves sufficient information for constructing the graph in the GNN. Using the gated recurrent unit and set2set model, the GNN maps the formed graph feature to the output cable damage through several updating times and provides the damage results to both the classification and regression outputs. The model is fine-tuned with the original input data using Adam optimization for the final objective function. A case study of an actual cable-stayed bridge was considered to evaluate the model performance. The results demonstrate that the proposed model provides high accuracy (over 90%) in classification and satisfactory correlation coefficients (over 0.98) in regression and is a robust approach to obtain effective identification results with a limited quantity of input data.

Multiobjective Hybrid GA for Constraints-based FMS Scheduling in make-to-order Manufacturing

  • Kim, Kwan-Woo;Mitsuo Gen;Hwang, Rea-Kook;Genji Yamazaki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.187-190
    • /
    • 2003
  • Many manufacturing companies consider the integrated and concurrent scheduling because they need the global optimization technology that could manufacture various products more responsive to customer needs. In this paper, we propose an advanced scheduling model to generate the schedules considering resource constraints and precedence constraints in make-to-order (MTO) manufacturing environments. Precedence of work- in-process(WIP) and resources constraints have recently emerged as one of the main constraints in advanced scheduling problems. The advanced scheduling problems is formulated as a multiobjective mathematical model for generating operation schedules which are obeyed resources constraints, alternative workstations of operations and the precedence constraints of WIP in MTO manufacturing. For effectively solving the advanced scheduling problem, the multi-objective hybrid genetic algorithm (m-hGA) is proposed in this paper. The m-hGA is to minimize the makespan, total flow time of order, and maximum tardiness for each order, simultaneously. The m-hGA approach with local search-based mutation through swap mutation is developed to solve the advanced scheduling problem. Numerical example is tested and presented for advanced scheduling problems with various orders to describe the performance of the proposed m-hGA.

  • PDF