Browse > Article
http://dx.doi.org/10.12989/sss.2022.29.3.513

Analyzing the bearing capacity of shallow foundations on two-layered soil using two novel cosmology-based optimization techniques  

Gor, Mesut (Firat University, Engineering Faculty, Civil Engineering Department, Division of Geotechnical Engineering)
Publication Information
Smart Structures and Systems / v.29, no.3, 2022 , pp. 513-522 More about this Journal
Abstract
Due to the importance of accurate analysis of bearing capacity in civil engineering projects, this paper studies the efficiency of two novel metaheuristic-based models for this objective. To this end, black hole algorithm (BHA) and multi-verse optimizer (MVO) are synthesized with an artificial neural network (ANN) to build the proposed hybrid models. Based on the settlement of a two-layered soil (and a shallow footing) system, the stability values (SV) of 0 and 1 (indicating the stability and failure, respectively) are set as the targets. Each model predicted the SV for 901 stages. The results indicated that the BHA and MVO can increase the accuracy (i.e., the area under the receiving operating characteristic curve) of the ANN from 94.0% to 96.3 and 97.2% in analyzing the SV pattern. Moreover, the prediction accuracy rose from 93.1% to 94.4 and 95.0%. Also, a comparison between the ANN's error decreased by the BHA and MVO (7.92% vs. 18.08% in the training phase and 6.28% vs. 13.62% in the testing phase) showed that the MVO is a more efficient optimizer. Hence, the suggested MVO-ANN can be used as a reliable approach for the practical estimation of bearing capacity.
Keywords
artificial neural network; bearing capacity; black hole algorithm; multi-verse optimizer; stability analysis;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Kuo, Y.L., Jaksa, M.B., Lyamin, A.V. and Kaggwa, W.S. (2009), "ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil", Comput. Geotech., 36(3), 503-516. https://doi.org/10.1016/j.compgeo.2008.07.002   DOI
2 Li, X., Yang, H., Zhang, J., Qian, G., Yu, H. and Cai, J. (2021), "Time-domain analysis of tamper displacement during dynamic compaction based on automatic control", Coatings, 11(9), 1092. https://doi.org/10.3390/coatings11091092   DOI
3 Fathizadeh, S.F., Vosoughi, A.R. and Banan, M.R. (2021), "Considering soil-structure interaction effects on performance-based design optimization of moment-resisting steel frames by an engineered cluster-based genetic algorithm", Eng. Optimiz., 53(3), 440-460. https://doi.org/10.1080/0305215X.2020.1739278   DOI
4 Moayedi, H., Abdullahi, M.A.M., Nguyen, H. and Rashid, A.S.A. (2021), "Comparison of dragonfly algorithm and Harris hawks optimization evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer foundation soils", Eng. Comput., 37(1), 437-447. https://doi.org/10.1007/s00366-019-00834-w   DOI
5 Dede, T., Kankal, M., Vosoughi, A.R., Grzywinski, M. and Kripka, M. (2019), "Artificial intelligence applications in civil engineering", Adv. Civil Eng., 2019. https://doi.org/10.1155/2019/8384523   DOI
6 Heidari, A.A. and Abbaspour, R.A. (2014), "A gravitational black hole algorithm for autonomous UCAV mission planning in 3D realistic environments", Int. J. Comput. Applicat., 95(9).
7 Burse, K., Manoria, M. and Kirar, V.P.S. (2011), "Improved back propagation algorithm to avoid local minima in multiplicative neuron model", Proceedings of International Conference on Advances in Information Technology and Mobile Communication, pp. 67-73. ttps://doi.org/10.1007/978-3-642-20573-6_11   DOI
8 Celik, E., Gor, H., Ozturk, N. and Kurt, E. (2017), "Application of artificial neural network to estimate power generation and efficiency of a new axial flux permanent magnet synchronous generator", Int. J. Hydrogen Energy, 42(28), 17692-17699. https://doi.org/10.1016/j.ijhydene.2017.01.168   DOI
9 Chen, L.Y., Liu, X., Wang, S.L. and Qin, C.Y. (2010), "Overexpression of the Endocan gene in endothelial cells from hepatocellular carcinoma is associated with angiogenesis and tumour invasion", J. Int. Med. Res., 38(2), 498-510. https://doi.org/10.1177/147323001003800213   DOI
10 Das, M. and Dey, A.K. (2018), "Prediction of bearing capacity of stone columns placed in soft clay using ANN model", Geotech. Geol. Eng., 36(3), 1845-1861. https://doi.org/10.1007/s10706-017-0436-0   DOI
11 Hansen, J.B. (1970), A revised and extended formula for bearing capacity.
12 Feng, Y., Zhang, B., Liu, Y., Niu, Z., Dai, B., Fan, Y. and Chen, X. (2021), "A 200-225-GHz manifold-coupled multiplexer utilizing metal waveguides", IEEE Transact. Microw. Theory Techniques, 69(2), 5327-5333. https://doi.org/10.1109/TMTT.2021.3119316   DOI
13 Gharehpasha, S., Masdari, M. and Jafarian, A. (2021), "Virtual machine placement in cloud data centers using a hybrid multiverse optimization algorithm", Artif. Intell. Rev., 54(3), 2221-2257. https://doi.org/10.1007/s10462-020-09903-9   DOI
14 Hans, R. and Kaur, H. (2020), "Binary Multi-Verse Optimization (BMVO) Approaches for Feature Selection", Int. J. Interact. Multimedia Artif. Intell., 6(1). https://doi.org/10.9781/ijimai.2019.07.004   DOI
15 Hatamlou, A. (2013), "Black hole: A new heuristic optimization approach for data clustering", Info. Sci., 222, 175-184. https://doi.org/10.1016/j.ins.2012.08.023   DOI
16 Hecht-Nielsen, R. (1992), Neural Networks for Perception, Elsevier, pp. 65-93. https://doi.org/10.1016/B978-0-12-741252-8.50010-8   DOI
17 Liu, W., Moayedi, H., Nguyen, H., Lyu, Z. and Bui, D.T. (2019), "Proposing two new metaheuristic algorithms of ALO-MLP and SHO-MLP in predicting bearing capacity of circular footing located on horizontal multilayer soil", Eng. Comput., 1-11. https://doi.org/10.1007/s00366-019-00897-9   DOI
18 Jabbar, S.F., Hamed, R.I. and Alwan, A.H. (2018), "The potential of nonparametric model in foundation bearing capacity prediction", Neural Comput. Applicat., 30(10), 3235-3241. https://doi.org/10.1007/s00521-017-2916-9   DOI
19 Kalinli, A., Acar, M.C. and Gunduz, Z. (2011), "New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization", Eng. Geol., 117(1-2), 29-38. https://doi.org/10.1016/j.enggeo.2010.10.002   DOI
20 Kurt, E. and Gor, H. (2014), "Electromagnetic design of a new axial flux generator", Proceedings of the 2014 6th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pp. 39-42. https://doi.org/10.1109/ECAI.2014.7090195   DOI
21 Malekzadeh, P. and Vosoughi, A.R. (2009), "DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges", Commun. Nonlinear Sci. Numer. Simul., 14(3), 906-915. https://doi.org/10.1016/j.cnsns.2007.10.014   DOI
22 Harandizadeh, H., Jahed Armaghani, D. and Khari, M. (2019), "A new development of ANFIS-GMDH optimized by PSO to predict pile bearing capacity based on experimental datasets", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-019-00849-3   DOI
23 Wang, L., Jin, X., Xu, W. and Xu, G. (2021), "A black hole particle swarm optimization method for the source parameters inversion: application to the 2015 Calbuco eruption, Chile", J. Geodyn., 146, 101849. https://doi.org/10.1016/j.jog.2021.101849   DOI
24 Tsai, H.C., Tyan, Y.Y., Wu, Y.W. and Lin, Y.H. (2013), "Determining ultimate bearing capacity of shallow foundations using a genetic programming system", Neural Comput. Applicat., 23(7-8), 2073-2084. https://doi.org/10.1007/s00521-012-1150-8   DOI
25 Sultana, P. and Dey, A.K. (2019), "Estimation of ultimate bearing capacity of footings on soft clay from plate load test data considering variability", Indian Geotech. J., 49(2), 170-183. https://doi.org/10.1007/s40098-018-0311-9   DOI
26 Swets, J.A. (1988), "Measuring the accuracy of diagnostic systems", Science, 240(4857), 1285-1293. https://doi.org/10.1126/science.3287615   DOI
27 Vosoughi, A.R. and Darabi, A. (2017), "A new hybrid CG-GAs approach for high sensitive optimization problems: with application for parameters estimation of FG nanobeams", Appl. Soft Comput., 52, 220-230. https://doi.org/10.1016/j.asoc.2016.12.016   DOI
28 Vosoughi, A.R., Malekzadeh, P., Topal, U. and Dede, T. (2018), "A hybrid DQ-TLBO technique for maximizing first frequency of laminated composite skew plates", Steel Compos. Struct., Int. J., 28(4), 509-516. https://doi.org/10.12989/scs.2018.28.4.509   DOI
29 Liang, S., Foong, L.K. and Lyu, Z. (2020), "Determination of the friction capacity of driven piles using three sophisticated search schemes", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-020-01118-4   DOI
30 Sundaram, A. (2020), "Multiobjective multi-verse optimization algorithm to solve combined economic, heat and power emission dispatch problems", Appl. Soft Comput., 91, 106195. https://doi.org/10.1016/j.asoc.2020.106195   DOI
31 Khare, A., Gupta, R. and Shukla, P.K. (2022), IoT and Analytics for Sensor Networks, Springer, pp. 333-343. https://doi.org/10.1007/978-981-16-2919-8_3   DOI
32 Faris, H., Aljarah, I. and Mirjalili, S. (2016), "Training feedforward neural networks using multi-verse optimizer for binary classification problems", Appl. Intell., 45(2), 322-332. https://doi.org/10.1007/s10489-016-0767-1   DOI
33 Faris, H., Hassonah, M.A., Al-Zoubi, A.M., Mirjalili, S. and Aljarah, I. (2018), "A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture", Neural Comput. Applicat., 30(8), 2355-2369. https://doi.org/10.1007/s00521-016-2818-2   DOI
34 Deeb, H., Sarangi, A., Mishra, D. and Sarangi, S.K. (2020), "Improved Black Hole optimization algorithm for data clustering", J. King Saud Univ.-Comput. Info. Sci. https://doi.org/10.1016/j.jksuci.2020.12.013   DOI
35 Vosoughi, A.R., Banan, M.R., Banan, M.R. and Malekzadeh, P. (2014), "Hybrid FE-IDQ-CG method for dynamic parameters estimation of multilayered half-space", Compos. Part B: Eng., 56, 74-82. https://doi.org/10.1016/j.compositesb.2013.08.001   DOI
36 Moayedi, H., Mehrabi, M., Kalantar, B., Abdullahi Mu'azu, M., A. Rashid, A.S., Foong, L.K. and Nguyen, H. (2019b), "Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of seismic-induced landslide", Geomat. Natural Hazards Risk, 10(1), 1879-1911. https://doi.org/10.1080/19475705.2019.1650126   DOI
37 Jamali, A. (2021), "Improving land use land cover mapping of a neural network with three optimizers of multi-verse optimizer, genetic algorithm, and derivative-free function", Egypt. J. Remote Sensing Space Sci., 24(3), 373-390. https://doi.org/10.1016/j.ejrs.2020.07.001   DOI
38 Khalili, A. and Vosoughi, A.R. (2018), "An approach for the Pasternak elastic foundation parameters estimation of beams using simulated frequencies", Inverse Probl. Sci. Eng., 26(8), 1079-1093. https://doi.org/10.1080/17415977.2017.1377707   DOI
39 Sadrossadat, E., Ghorbani, B., Oskooei, R. and Kaboutari, M. (2018), "Use of adaptive neuro-fuzzy inference system and gene expression programming methods for estimation of the bearing capacity of rock foundations", Eng. Computat. https://doi.org/10.1108/EC-07-2017-0258   DOI
40 Moayedi, H., Gor, M., Khari, M., Foong, L.K., Bahiraei, M. and Bui, D.T. (2020), "Hybridizing four wise neural-metaheuristic paradigms in predicting soil shear strength", Measurement, 107576. https://doi.org/10.1016/j.measurement.2020.107576   DOI
41 Lu, N., Wang, H., Wang, K. and Liu, Y. (2021), "Maximum Probabilistic and Dynamic Traffic Load Effects on Short-to-Medium Span Bridges", Comput. Model. Eng. Sci., 127(1), 345-360. https://doi.org/10.32604/cmes.2021.013792   DOI
42 Mirjalili, S., Mirjalili, S.M. and Hatamlou, A. (2016), "Multi-verse optimizer: a nature-inspired algorithm for global optimization", Neural Comput. Applicat., 27(2), 495-513. https://doi.org/10.1007/s00521-015-1870-7   DOI
43 Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8   DOI
44 Azan, D. and Haddad, A. (2019), "Simple equations for considering spatial variability on the bearing capacity of clay", Civil Eng. J., 5(1), 93-106. https://doi.org/10.28991/cej-2019-03091228   DOI
45 Bui, D.T., Moayedi, H., Kalantar, B., Osouli, A., Gor, M., Pradhan, B., Nguyen, H. and Rashid, A.S.A. (2019), "Harris hawks optimization: A novel swarm intelligence technique for spatial assessment of landslide susceptibility", Sensors, 19, 3590. https://doi.org/10.3390/s19163590   DOI
46 Luo, Y., Zheng, H., Zhang, H. and Liu, Y. (2021), "Fatigue reliability evaluation of aging prestressed concrete bridge accounting for stochastic traffic loading and resistance degradation", Adv. Struct. Eng., 24(13), 3021-3029. https://doi.org/10.1177/13694332211017995   DOI
47 Meyerhof, G.G. (1963), "Some recent research on the bearing capacity of foundations", Can. Geotech. J., 1(1), 16-26. https://doi.org/10.1139/t63-003   DOI
48 Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2018), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-018-0644-0   DOI
49 Moayedi, H., Bui, D.T. and Thi Ngo, P.T. (2019a), "Neural computing improvement using four metaheuristic optimizers in bearing capacity analysis of footings settled on two-layer soils", Appl. Sci., 9(23), 5264. https://doi.org/10.3390/app9235264   DOI
50 Munoz, R., Olivares, R., Taramasco, C., Villarroel, R., Soto, R., Barcelos, T.S., Merino, E. and Alonso-Sanchez, M.F. (2018), "Using black hole algorithm to improve eeg-based emotion recognition", Computat. Intell. Neurosci., 2018. https://doi.org/10.1155/2018/3050214   DOI
51 Onat, O. and Gul, M. (2018), "Application of artificial neural networks to the prediction of out-of-plane response of infill walls subjected to shake table", Smart Struct. Syst., Int. J., 21(4), 521-535. https://doi.org/10.12989/sss.2018.21.4.521   DOI
52 Salih, S.Q. (2019), "A new training method based on black hole algorithm for convolutional neural network", J. Southwest Jiaotong Univ., 54(3). https://doi.org/10.35741/issn.0258-2724.54.3.22   DOI
53 Moayedi, H. and Mosavi, A. (2021), "A water cycle-based error minimization technique in predicting the bearing capacity of shallow foundation", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-021-01289-8   DOI
54 Al-qaness, M.A., Abd Elaziz, M., Ewees, A.A. and Cui, X. (2019), "A modified adaptive neuro-fuzzy inference system using multiverse optimizer algorithm for oil consumption forecasting", Electronics, 8(10), 1071. https://doi.org/10.3390/electronics8101071   DOI
55 Breiman, L. (1996), "Bagging predictors", Mach. Learn., 24(2), 123-140. https://doi.org/10.1007/BF00058655   DOI
56 Padmini, D., Ilamparuthi, K. and Sudheer, K.P. (2008), "Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models", Comput. Geotech., 35(1), 33-46. https://doi.org/10.1016/j.compgeo.2007.03.001   DOI
57 Pashaei, E. and Pashaei, E. (2021), "Training feedforward neural network using enhanced black hole algorithm: a case study on COVID-19 related ACE2 gene expression classification", Arab. J. Sci. Eng., 46(4), 3807-3828. https://doi.org/10.1007/s13369-020-05217-8   DOI
58 Sun, L., Li, C., Zhang, C., Su, Z. and Chen, C. (2018), "Early monitoring of rebar corrosion evolution based on FBG sensor", Int. J. Struct. Stabil. Dyn., 18(08), 1840001. https://doi.org/10.1142/S0219455418400011   DOI
59 Shahnazari, H. and Tutunchian, M.A. (2012), "Prediction of ultimate bearing capacity of shallow foundations on cohesionless soils: An evolutionary approach", KSCE J. Civil Eng., 16(6), 950-957. https://doi.org/10.1007/s12205-012-1651-0   DOI
60 Soleimanbeigi, A. and Hataf, N. (2005), "Predicting ultimate bearing capacity of shallow foundations on reinforced cohesionless soils using artificial neural networks", Geosynth. Int., 12(6), 321-332. https://doi.org/10.1680/gein.2005.12.6.321   DOI
61 Terzaghi, K. (1943), "Earth pressure and shearing resistance of plastic clay: a symposium: liner-plate tunnels on the Chicago (IL) subway", Transact. Am. Soc. Civil Engs., 108(1), 970-1007.   DOI
62 Seyedashraf, O., Mehrabi, M. and Akhtari, A.A. (2018), "Novel approach for dam break flow modeling using computational intelligence", J. Hydrol., 559, 1028-1038. https://doi.org/10.1016/j.jhydrol.2018.03.001   DOI
63 Xu, J., Lan, W., Ren, C., Zhou, X., Wang, S. and Yuan, J. (2021), "Modeling of coupled transfer of water, heat and solute in saline loess considering sodium sulfate crystallization", Cold Regions Sci. Technol., 189, 103335. https://doi.org/10.1016/j.coldregions.2021.103335   DOI
64 Hornik, K. (1991), "Approximation capabilities of multilayer feedforward networks", Neural Networks, 4(2), 251-257. https://doi.org/10.1016/0893-6080(91)90009-T   DOI
65 Vosoughi, A.R. and Darabi, A. (2016), "A hybrid inverse method for small scale parameter estimation of FG nanobeams", Steel Compos. Struct., Int. J., 20(5), 1119-1131. https://doi.org/10.12989/scs.2016.20.5.1119   DOI
66 Vosoughi, A.R. (2016), "Nonlinear free vibration of functionally graded nanobeams on nonlinear elastic foundation", Iran. J. Sci. Technol. Transact. Civil Eng., 40(1), 23-32. https://doi.org/10.1007/s40996-016-0012-5   DOI
67 More, J.J. (1978), Numerical Analysis, Springer, pp. 105-116. https://doi.org/10.1007/BFb0067700   DOI
68 Ornek, M. (2014), "Estimation of ultimate loads of eccentric-inclined loaded strip footings rested on sandy soils", Neural Comput. Applicat., 25(1), 39-54. https://doi.org/10.1007/s00521-013-1444-5   DOI
69 Pohjankukka, J., Riihimaki, H., Nevalainen, P., Pahikkala, T., AlaIlomaki, J., Hyvonen, E., Varjo, J. and Heikkonen, J. (2016), "Predictability of boreal forest soil bearing capacity by machine learning", J. Terramech., 68, 1-8. https://doi.org/10.1016/j.jterra.2016.09.001   DOI
70 Celik, E. and Gor, H. (2019), "Enhanced speed control of a DC servo system using PI+ DF controller tuned by stochastic fractal search technique", J. Franklin Inst., 356(3), 1333-1359. https://doi.org/10.1016/j.jfranklin.2018.11.020   DOI