• Title/Summary/Keyword: Multi-Objective Evolutionary Algorithm

Search Result 73, Processing Time 0.022 seconds

Numerical optimization of Wells turbine for wave energy extraction

  • Halder, Paresh;Rhee, Shin Hyung;Samad, Abdus
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.11-24
    • /
    • 2017
  • The present work focuses multi-objective optimization of blade sweep for a Wells turbine. The blade-sweep parameters at the mid and the tip sections are selected as design variables. The peak-torque coefficient and the corresponding efficiency are the objective functions, which are maximized. The numerical analysis has been carried out by solving 3D RANS equations based on k-w SST turbulence model. Nine design points are selected within a design space and the simulations are run. Based on the computational results, surrogate-based weighted average models are constructed and the population based multi-objective evolutionary algorithm gave Pareto optimal solutions. The peak-torque coefficient and the corresponding efficiency are enhanced, and the results are analysed using CFD simulations. Two extreme designs in the Pareto solutions show that the peak-torque-coefficient is increased by 28.28% and the corresponding efficiency is decreased by 13.5%. A detailed flow analysis shows the separation phenomena change the turbine performance.

Optimum Design of Integer and Fractional-Order PID Controllers for Boost Converter Using SPEA Look-up Tables

  • Amirahmadi, Ahmadreza;Rafiei, Mohammadreza;Tehrani, Kambiz;Griva, Giovanni;Batarseh, Issa
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.160-176
    • /
    • 2015
  • This paper presents a method of designing optimal integer- and fractional-order proportional-integral-derivative (FOPID) controllers for a boost converter to gain a set of favorable characteristics at various operating points. A Pareto-based multi-objective optimization approach called strength Pareto evolutionary algorithm (SPEA) is used to obtain fast and low overshoot start-up and dynamic responses and switching stability. The optimization approach generates a set of optimal gains called Pareto set, which corresponds to a Pareto front. The Pareto front is a set of optimal results for objective functions. These results provide designers with a trade-off look-up table, in which they can easily choose any of the optimal gains based on design requirements. The SPEA also overcomes the difficulties of tuning the FOPID controller, which is an extension to the classic integer-order PID controllers and potentially promises better results. The proposed optimized FOPID controller provides an excellent start-up response and the desired dynamic response. This paper presents a detailed comparison of the optimum integer- and the fractional-order PID controllers. Extensive simulation and experimental results prove the superiority of the proposed design methodology to achieve a wide set of desired technical goals.

Meta-Heuristic Algorithms for a Multi-Product Dynamic Lot-Sizing Problem with a Freight Container Cost

  • Kim, Byung-Soo;Lee, Woon-Seek
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.3
    • /
    • pp.288-298
    • /
    • 2012
  • Lot sizing and shipment scheduling are two interrelated decisions made by a manufacturing plant and a third-party logistics distribution center. This paper analyzes a dynamic inbound ordering problem and shipment problem with a freight container cost, in which the order size of multiple products and single container type are simultaneously considered. In the problem, each ordered product placed in a period is immediately shipped by some freight containers in the period, and the total freight cost is proportional to the number of containers employed. It is assumed that the load size of each product is equal and backlogging is not allowed. The objective of this study is to simultaneously determine the lot-sizes and the shipment schedule that minimize the total costs, which consist of production cost, inventory holding cost, and freight cost. Because the problem is NP-hard, we propose three meta-heuristic algorithms: a simulated annealing algorithm, a genetic algorithm, and a new population-based evolutionary meta-heuristic called self-evolution algorithm. The performance of the meta-heuristic algorithms is compared with a local search heuristic proposed by the previous paper in terms of the average deviation from the optimal solution in small size problems and the average deviation from the best one among the replications of the meta-heuristic algorithms in large size problems.

Optimizing dispatching strategy based on multicriteria heuristics for AGVs in automated container terminal (자동화 컨테이너 터미널의 복수 규칙 기반 AGV 배차 전략 최적화)

  • Kim, Jeong-Min;Choe, Ri;Park, Tae-Jin;Ryu, Kwang-Ryul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.218-219
    • /
    • 2011
  • This paper focuses on dispatching strategy for AGVs(Automated Guided Vehicle). The goal of AGV dispatching problem is allocating jobs to AGVs to minimizing QC delay and AGV total travel distance. Due to the highly dynamic nature of container terminal environment, the effect of dispatching is hard to predict thus it leads to frequent modification of dispatching results. Given this situation, single rule-based approach is widely used due to its simplicity and small computational cost. However, single rule-based approach has a limitation that cannot guarantee a satisfactory performance for the various performance measures. In this paper, dispatching strategy based on multicriteria heuristics is proposed. Proposed strategy consists of multiple decision criteria. A muti-objective evolutionary algorithm is applied to optimize weights of those criteria. The result of simulation experiment shows that the proposed approach outperforms single rule-based dispatching approaches.

  • PDF

A Two-tier Optimization Approach for Decision Making in Many-objective Problems (고도 다목적 문제에서의 의사 결정을 위한 이중 최적화 접근법)

  • Lee, Ki-Baek
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.21-29
    • /
    • 2015
  • This paper proposes a novel two-tier optimization approach for decision making in many-objective problems. Because the Pareto-optimal solution ratio increases exponentially with an increasing number of objectives, simply finding the Pareto-optimal solutions is not sufficient for decision making in many-objective problems. In other words, it is necessary to discriminate the more preferable solutions from the other solutions. In the proposed approach, user preference-oriented as well as diverse Pareto-optimal solutions can be obtained as candidate solutions by introducing an additional tier of optimization. The second tier of optimization employs the corresponding secondary objectives, global evaluation and crowding distance, which were proposed in previous works, to represent the users preference to a solution and the crowdedness around a solution, respectively. To demonstrate the effectiveness of the proposed approach, decision making for some benchmark functions is conducted, and the outcomes with and without the proposed approach are compared. The experimental results demonstrate that the decisions are successfully made with consideration of the users preference through the proposed approach.

Numerical Optimization of a Transonic Axial Compressor with Casing Grooves for Improvement of Operating Stability (케이싱 그루브가 장착된 천음속 축류압축기의 작동 안정성 향상을 위한 수치최적화)

  • Kim, Jin-Hyuk;Choi, Kwang-Jin;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.31-38
    • /
    • 2011
  • Optimization using a hybrid multi-objective evolutionary algorithm coupled with response surface approximation has been performed to improve the performance of a transonic axial compressor with circumferential casing grooves. In order to optimize the operating stability and peak adiabatic efficiency of the compressor with circumferential casing grooves, tip clearance, angle distribution at blade tip and the depth of the circumferential casing grooves are selected as design variables. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by finite volume approximations. The trade-off between two objectives with the interaction of blade and casing treatment is determined and discussed with respect to the representative clusters in the Pareto-optimal solutions compared to the axial compressor without the casing treatment.

Multi Area Power Dispatch using Black Widow Optimization Algorithm

  • Girishkumar, G.;Ganesan, S.;Jayakumar, N.;Subramanian, S.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.113-130
    • /
    • 2022
  • Sophisticated automation-based electronics world, more electrical and electronic devices are being used by people from different regions across the universe. Different manufacturers and vendors develop and market a wide variety of power generation and utilization devices under different operating parameters and conditions. People use a variety of appliances which use electrical energy as power source. These appliances or gadgets utilize the generated energy in different ratios. Night time the utilization will be less when compared with day time utilization of power. In industrial areas especially mechanical industries or Heavy machinery usage regions power utilization will be a diverse at different time intervals and it vary dynamically. This always causes a fluctuation in the grid lines because of the random and intermittent use of these apparatus while the power generating apparatus is made to operate to provide a steady output. Hence it necessitates designing and developing a method to optimize the power generated and the power utilized. Lot of methodologies has been proposed in the recent years for effective optimization and economical load dispatch. One such technique based on intelligent and evolutionary based is Black Widow Optimization BWO. To enhance the optimization level BWO is hybridized. In this research BWO based optimize the load for multi area is proposed to optimize the cost function. A three type of system was compared for economic loads of 16, 40, and 120 units. In this research work, BWO is used to improve the convergence rate and is proven statistically best in comparison to other algorithms such as HSLSO, CGBABC, SFS, ISFS. Also, BWO algorithm best optimize the cost parameter so that dynamically the load and the cost can be controlled simultaneously and hence effectively the generated power is maximum utilized at different time intervals with different load capacity in different regions of utilization.

Exploring the Feature Selection Method for Effective Opinion Mining: Emphasis on Particle Swarm Optimization Algorithms

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.41-50
    • /
    • 2020
  • Sentimental analysis begins with the search for words that determine the sentimentality inherent in data. Managers can understand market sentimentality by analyzing a number of relevant sentiment words which consumers usually tend to use. In this study, we propose exploring performance of feature selection methods embedded with Particle Swarm Optimization Multi Objectives Evolutionary Algorithms. The performance of the feature selection methods was benchmarked with machine learning classifiers such as Decision Tree, Naive Bayesian Network, Support Vector Machine, Random Forest, Bagging, Random Subspace, and Rotation Forest. Our empirical results of opinion mining revealed that the number of features was significantly reduced and the performance was not hurt. In specific, the Support Vector Machine showed the highest accuracy. Random subspace produced the best AUC results.

Weighted sum multi-objective optimization of skew composite laminates

  • Kalita, Kanak;Ragavendran, Uvaraja;Ramachandran, Manickam;Bhoi, Akash Kumar
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.21-31
    • /
    • 2019
  • Optimizing composite structures to exploit their maximum potential is a realistic application with promising returns. In this research, simultaneous maximization of the fundamental frequency and frequency separation between the first two modes by optimizing the fiber angles is considered. A high-fidelity design optimization methodology is developed by combining the high-accuracy of finite element method with iterative improvement capability of metaheuristic algorithms. Three powerful nature-inspired optimization algorithms viz. a genetic algorithm (GA), a particle swarm optimization (PSO) variant and a cuckoo search (CS) variant are used. Advanced memetic features are incorporated in the PSO and CS to form their respective variants-RPSOLC (repulsive particle swarm optimization with local search and chaotic perturbation) and CHP (co-evolutionary host-parasite). A comprehensive set of benchmark solutions on several new problems are reported. Statistical tests and comprehensive assessment of the predicted results show CHP comprehensively outperforms RPSOLC and GA, while RPSOLC has a little superiority over GA. Extensive simulations show that the on repeated trials of the same experiment, CHP has very low variability. About 50% fewer variations are seen in RPSOLC as compared to GA on repeated trials.

Analysis of the applicability of parameter estimation methods for a transient storage model (저장대모형의 매개변수 산정을 위한 최적화 기법의 적합성 분석)

  • Noh, Hyoseob;Baek, Donghae;Seo, Il Won
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.681-695
    • /
    • 2019
  • A Transient Storage Model (TSM) is one of the most widely used model accounting for complex solute transport in natural river to understanding natural river properties with four TSM key parameters. The TSM parameters are estimated via inverse modeling. Parameter estimation of the TSM is carried out by solving optimization problem about finding best fitted simulation curve with measured curve obtained from tracer test. Several studies have reported uncertainty in parameter estimation from non-convexity of the problem. In this study, we assessed best combination of optimization method and objective function for TSM parameter estimation using Cheong-mi Creek tracer test data. In order to find best optimization setting guaranteeing convergence and speed, Evolutionary Algorithm (EA) based global optimization methods, such as CCE of SCE-UA and MCCE of SP-UCI, and error based objective functions were compared, using Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL). Overall results showed that multi-EA SC-SAHEL with Percent Mean Squared Error (PMSE) objective function is the best optimization setting which is fastest and stable method in convergence.