• Title/Summary/Keyword: Multi-Functional Applications

Search Result 107, Processing Time 0.029 seconds

A Study on the standardize the characteristic evaluation of DC magnetron sputtered silver coatings for engineering purposes (D.C. magnetron sputter를 이용한 Ag layer 건식 도금층의 특성 평가 국제 표준화에 대한 연구)

  • Gyawali, Gobinda;Choi, Jinhyuk;Lim, Tae Kwan;Jung, Myoung Joon;Lee, Soo Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.249-249
    • /
    • 2015
  • Silver films have been of considerable interest for years due to their better performance relative to other metal films for engineering applications. A series of multi-layer silver coatings with different thickness (i.e. 0.3 um to 1.5 um) were prepared on Aluminium substrate containing copper undercoat by direct current (DC) magnetron sputtering method. For the comparative purpose, similar thickness silver coatings were prepared by electrolytic deposition method. Microstructural, morphological, and mechanical characteristics of the silver coatings were evaluated by means of scanning electron microscope (SEM), X-ray diffraction (XRD), Surface roughness test, microhardness test and nano-scratch test. From the results, it has been elucidated that the silver films prepared by DC magnetron sputtering method has superior properties in comparison to the wet coating method. On the other hand, DC magnetron sputtering method is relatively easier, faster, eco-friendly and more productive than the electrolytic deposition method that uses several kinds of hazardous chemicals for bath formulation. Therefore, a New Work Item Proposal (NWIP) for the test methods standardization of DC magnetron sputtered silver coatings has recently been proposed via KATS, Korea and a NP ballot is being progressed within a technical committee "ISO/TC107-metallic and other inorganic coating".

  • PDF

Rotary CVD Process for Surface Treatment of Powders (분말소재의 표면처리를 위한 회전형 CVD 공정)

  • Jong-Hwan Lee;Goo-Hwan Jeong
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.341-352
    • /
    • 2023
  • This paper reviews the potentials of a rotary chemical vapor deposition (RCVD) process for nanomaterial synthesis and coating on powder-based materials. The rotary reactor offers a significant improvement over traditional CVD methods having horizontal and fixed reaction chambers. The RCVD system yields enhanced productivity and surface coating uniformity of nanoparticles applied in various purposes, such as efficient heat dissipation, surface hardness enhancement, and enhanced energy storage performances. The effectiveness of the RCVD system would open up new possibilities in various applications because uniform coating on powder-based materials with massive productivity is inevitable to develop multi-functional materials with high reliability.

Bringing 3D ICs to Aerospace: Needs for Design Tools and Methodologies

  • Lim, Sung Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.117-122
    • /
    • 2017
  • Three-dimensional integrated circuits (3D ICs), starting with memory cubes, have entered the mainstream recently. The benefits many predicted in the past are indeed delivered, including higher memory bandwidth, smaller form factor, and lower energy. However, 3D ICs have yet to find their deployment in aerospace applications. In this paper we first present key design tools and methodologies for high performance, low power, and reliable 3D ICs that mainly target terrestrial applications. Next, we discuss research needs to extend their capabilities to ensure reliable operations under the harsh space environments. We first present a design methodology that performs fine-grained partitioning of functional modules in 3D ICs for power reduction. Next, we discuss our multi-physics reliability analysis tool that identifies thermal and mechanical reliability trouble spots in the given 3D IC layouts. Our tools will help aerospace electronics designers to improve the reliability of these 3D IC components while not degrading their energy benefits.

An analysis of Classification and Characteristics of PV Modules Applied into Building Roof (PV모듈의 지붕 적용 유형 분류 및 특성 분석)

  • Moon, Jong-Hyeok;Kim, Jin-Hee;Kim, Yong-Jae;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.251-258
    • /
    • 2009
  • Building-Integrated Photovoltaics (BIPV) is a photovoltaic (PV) technology which can be incorporated into the roofs walls of both commercial and domestic buildings to provide a source of electricity. BIPV systems can operate as a multi-functional building components, which generates electricity and serves as part of building envelope. It can be regarded as a new architectural elements, adding to the building's aesthetics. Applying PV modules on roof has an advantage over wall applications as they seem to receive more solar radiation on PV modules. There are various types of PV applications on building roofs: attached, on-top and integrated. This paper describes the classification and characteristics of PV applications on roofs.

  • PDF

APPROXIMATING COMMON FIXED POINT OF THREE MULTIVALUED MAPPINGS SATISFYING CONDITION (E) IN HYPERBOLIC SPACES

  • Austine Efut Ofem;Godwin Chidi Ugwunnadi;Ojen Kumar Narain;Jong Kyu Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.623-646
    • /
    • 2023
  • In this article, we introduce the hyperbolic space version of a faster iterative algorithm. The proposed iterative algorithm is used to approximate the common fixed point of three multi-valued almost contraction mappings and three multi-valued mappings satisfying condition (E) in hyperbolic spaces. The concepts weak w2-stability involving three multi-valued almost contraction mappings are considered. Several strong and △-convergence theorems of the suggested algorithm are proved in hyperbolic spaces. We provide an example to compare the performance of the proposed method with some well-known methods in the literature.

Multiparameter Flow Cytometry: Advances in High Resolution Analysis

  • O'Donnell, Erika A.;Ernst, David N.;Hingorani, Ravi
    • IMMUNE NETWORK
    • /
    • v.13 no.2
    • /
    • pp.43-54
    • /
    • 2013
  • Over the past 40 years, flow cytometry has emerged as a leading, application-rich technology that supports high-resolution characterization of individual cells which function in complex cellular networks such as the immune system. This brief overview highlights advances in multiparameter flow cytometric technologies and reagent applications for characterization and functional analysis of cells modulating the immune network. These advances significantly support highthroughput and high-content analyses and enable an integrated understanding of the cellular and molecular interactions that underlie complex biological systems.

QUALITATIVE ANALYSIS OF ABR-FRACTIONAL VOLTERRA-FREDHOLM SYSTEM

  • Shakir M. Atshan;Ahmed A. Hamoud
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.113-130
    • /
    • 2024
  • In this work, we explore the existence and uniqueness results for a class of boundary value issues for implicit Volterra-Fredholm nonlinear integro-differential equations (IDEs) with Atangana-Baleanu-Riemann fractional (ABR-fractional) that have non-instantaneous multi-point fractional boundary conditions. The findings are supported by Krasnoselskii's fixed point theorem, Gronwall-Bellman inequality, and the Banach contraction principle. Finally, a demonstrative example is provided to support our key findings.

Design of a Multi-Thread Architecture for an LLRP Server (LLRP(Low Level Reader Protocol) 서버를 위한 멀티쓰레드 구조의 설계)

  • Lee, Tae-Young;Kim, Yun-Ho;Seong, Yeong-Rak;Oh, Ha-Ryoung
    • The KIPS Transactions:PartA
    • /
    • v.19A no.2
    • /
    • pp.93-100
    • /
    • 2012
  • LLRP (Low-Level Reader Protocol) specifies an interface between RFID readers and RFID applications, also called LLRP servers and clients respectively. An LLRP server should concurrently execute various functions. This paper designs an LLRP server of a multi-threaded architecture. For that, (i) the operational procedure between LLRP servers and clients is investigated, (ii) the functional requirements of LLRP servers are presented, (iii) the operation of an LLRP server is decomposed into several threads to satisfy those functional requirements, and (iv) the operational procedure is further examined in thread-level. To validate the designed architecture, it is modeled and simulated by using the DEVS formalism which specifies discrete event systems in a hierarchical, modular manner. From the simulation result, we can conclude that the proposed architecture conforms the LLRP standard and satisfies all the given functional requirements.

Fundamentals and Applications of Multi-functional NSOM Technology to Characterization of Nano Structured Materials (다기능 NSOM (mf-NSOM) 을 이용한 나노 구조 재료 분석에 관한 원리와 응용)

  • Lee Woo-Jin;Pyun Su-Il;Smyrl W. H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.108-123
    • /
    • 2004
  • Imaging of surfaces and structures by near-field scanning optical microscopy (NSOM) has matured and is routinely used for studies ranging from biology to materials science. Of interest in this review paper is a versatility of modified or multi-functional NSOM (mf-NSOM) to enable high resolution imaging in several modes: (1) Concurrent fluorescence and Topographical Imaging (gases) (2) Microspectroscopy (gases) (3) Concurrent Scanning Electrochemical and Topographical Imaging (SECM) (liquids) (4) Concurrent Photoelectrochemical and Topographical Imaging (PEM) (liquids) The present study will summarize some of the recent advances in mf-NSOM work confirmed and supported by the results from several other imaging techniques of optical, fluorescence, electron and electrochemical microscopy. The studies are directed at providing local information on pitting precursor sites and vulnerable areas on metal and semiconductor surfaces, and at reactive sites on heterogeneous, catalytic substrates, especially on Al 2024 alloy and polycrystalline Ti. In addition, we will introduce some results related to the laser-induced nanometal (Ag) synthesis using mf-NSOM.

A Study on User's Opinion for Designing of Multi-Functional Plant Applications (복합적 기능의 식물 애플리케이션 디자인을 위한 사용자 조사)

  • Lee, Ha Na;Park, Han Na;Paik, Jin Kyung
    • Korea Science and Art Forum
    • /
    • v.37 no.4
    • /
    • pp.297-308
    • /
    • 2019
  • Air pollution due to the fine dust level updating every day, and the problem of indoor air pollution due to ventilation difficulties and indoor discharge pollutants is also serious. In order to improve the indoor air quality, the air purification effect using the plants is prominent. In this study was started to investigated the living environment of modern people, the risk of indoor air pollution and the improvement function of plants, and to activate plant application. The purpose of this study is to analyze the main functions and design status of domestic and overseas plant - related applications, and to understand the actual use of modern plant applications and to help them learn more convenient plant - related knowledge. Therefore, this paper attempted to establish a basis for suggesting a new plant application by conducting a survey on the health effects of indoor air pollution and user awareness of plant - related applications. The results and contents of the study are as follows. First, as a theoretical review, indoor air pollution is more dangerous to modern people who have a high proportion of indoor living time and adversely affects their health. In order to solve such a problem, it has been shown that air conditioning and stress reduction can be effectively achieved by placing plants in the indoor space. Second, the analysis of the previous study shows the risk of indoor air pollution and its adverse effects on health. In addition, I have been able to find some researches related to the improvement of the indoor air by using the air purifying plants, and I can see the improvement of the user's behavior through the development or improvement of the application. Third, as a result of the survey on the status of domestic and overseas plant application, the main function of the application having high installation number was watering notification, provision of basic information of plants, and most of the functions were plant discerment through cameras. Fourth, most of the survey respondents have either raised or raised plants. Those who have little experience with plant applications have also shown positive feedback in the future on the use of plant-related applications. In addition, due to social problems such as air pollution, air purification using plants and functional plants showed high interest. Based on these results, we propose the need for a multi-functional plant application that can improve the indoor air pollution and facilitate the provision of information related to it.