• Title/Summary/Keyword: Multi-Coil

Search Result 186, Processing Time 0.021 seconds

Three-D core multiphysics for simulating passively autonomous power maneuvering in soluble-boron-free SMR with helical steam generator

  • Abdelhameed, Ahmed Amin E.;Chaudri, Khurrum Saleem;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2699-2708
    • /
    • 2020
  • Helical-coil steam generator (HCSG) technology is a major design candidate for small modular reactors due to its compactness and capability to produce superheated steam with high generation efficiency. In this paper, we investigate the feasibility of the passively autonomous power maneuvering by coupling the 3-D transient multi-physics of a soluble-boron-free (SBF) core with a time-dependent HCSG model. The predictor corrector quasi-static method was used to reduce the cost of the transient 3-D neutronic solution. In the numerical system simulations, the feedwater flow rate to the secondary of the HCSGs is adjusted to extract the demanded power from the primary loop. This varies the coolant temperature at the inlet of the SBF core, which governs the passively autonomous power maneuvering due to the strongly negative coolant reactivity feedback. Here, we simulate a 100-50-100 load-follow operation with a 5%/minute power ramping speed to investigate the feasibility of the passively autonomous load-follow in a 450 MWth SBF PWR. In addition, the passively autonomous frequency control operation is investigated. The various system models are coupled, and they are solved by an in-house Fortran-95 code. The results of this work demonstrate constant steam temperature in the secondary side and limited variation of the primary coolant temperature. Meanwhile, the variations of the core axial shape index and the core power peaking are sufficiently small.

MULTI-PHYSICAL SIMULATION FOR THE DESIGN OF AN ELECTRIC RESISTOJET GAS THRUSTER IN THE NEXTSAT-1 (차세대 인공위성 전기저항제트 가스추력기의 다물리 수치모사)

  • Chang, S.M.;Choi, J.C.;Han, C.Y.;Shin, G.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • NEXTSat-1 is the next-generation small-size artificial satellite system planed by the Satellite Technology Research Center(SatTReC) in Korea Advanced Institute of Science and Technology(KAIST). For the control of attitude and transition of the orbit, the system has adopted a RHM(Resisto-jet Head Module), which has a very simple geometry with a reasonable efficiency. An axisymmetric model is devised with two coil-resistance heaters using xenon(Xe) gas, and the minimum required specific impulse is 60 seconds under the thrust more than 30 milli-Newton. To design the module, seven basic parameters should be decided: the nozzle shape, the power distribution of heater, the pressure drop of filter, the diameter of nozzle throat, the slant length and the angle of nozzle, and the size of reservoir, etc. After quasi one-dimensional analysis, a theoretical value of specific impulse is calculated, and the optima of parameters are found out from the baseline with a series of multi-physical numerical simulations based on the compressible Navier-Stokes equations for gas and the heat conduction energy equation for solid. A commercial code, COMSOL Multiphysics is used for the computation with a FEM (finite element method) based numerical scheme. The final values of design parameters indicate 5.8% better performance than those of baseline design after the verification with all the tuned parameters. The present method should be effective to reduce the time cost of trial and error in the development of RHM, the thruster of NEXTSat-1.

A study on how to discriminate the polarities of stator windings for 3 phase induction motors by using general purpose multi-testers (멀티테스터를 이용한 3상유도전동기 고정자 권선의 극성 판별법에 관한 연구)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1137-1140
    • /
    • 2014
  • Faulty electric motors onboard vessels with anomalies in windings or poor insulation are usually repaired at land based workshops and reinstalled in place by crew hands after receiving the repaired motors. Especially for 3 phase induction motors which need Y-${\delta}$ starters with 6 lead wires, it would happen that the polarities of stator windings cannot be well distinguished if the original tags of these wires are erased or not visible clearly, resulting in subsequent damage to the repaired motor due to extreme current flow when the power is given to the motor the stator windings of which are wrongly connected in the polarity. This study proposes an easy way to make correct connection in winding polarities without failures based on the electro-magnetically induced voltages on windings when a slight DC current is supplied to a winding coil by using an analog multi-tester. The proposed method is applied to actual motors and delves into the applicability for polarity discrimination through a few measurements onboard vessels.

A Study on the Apparatus for Measuring Oxygen-Permeability of Membranes with a Multi-Electrode Oxygen Sensor (다전극 산소 센서를 이용한 고분자 막의 산소 투과도 측정 장치 연구)

  • Jeong, Il-Son;Jung, Jae-Chil;Kim, Tai-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.229-234
    • /
    • 2012
  • The existing permeability measurements based on pressure differential between the polymer membrane that is permeable to measure the amount of oxygen used, but these methods must be kept in a vacuum, and the measurement of the membrane with low permeability in the membrane is too time consuming. In recent years by using electrochemical method polymer membrane currents caused by the amount of oxygen is a measure of how much is used. In this study, apparatus consisting of one anode and six cathodes for multi-oxygen permeability tester used the same number of membranes produced by electrochemical oxygen permeation characteristics. In this study, one silver/silver chloride anode electrochemical method with a hexagonal sensor to put various kinds of polymer membranes with the six oxygen permeability for simultaneous measurement in real-time systems. Six cathodes (Pt), and one of the coil-shaped anode (Ag/AgCl) to form a hexagonal one of the polarographic oxygen sensor in a single measurement system by six sensors. Each sensor for making hexagonal specificity of the sensor to compensate for the conditions obtained in a pure nitrogen gas and pure oxygen gas conditions. With this study, self-developed hexagonal sensor capable of measuring sensors and oxygen permeability tester, for a multi-six different oxygen permeability characteristics of the membrane measured at the same time.

Evaluation of Thermal Response Test of Energy Pile (에너지 파일의 현장 열응답 시험에 관한 연구)

  • Yoon, Seok;Lee, Seung-Rae;Kim, Min-Jun;Go, Gyu-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.93-99
    • /
    • 2014
  • Use of geothermal energy has been increased for its economical application and environmentally friendly utilization. Particularly, for energy piles, a spiral coil type ground heat exchanger (GHE) is more preferred than line type GHEs such as U and W shaped GHEs. A PHC energy pile with spiral coil type GHE was installed in an area of partially saturated dredged soil deposit, and a thermal response test (TRT) was conducted for 240 hours under a continuous operation condition. Besides, remolded soil samples from different layers were collected in the field, and soil specimens were reconstructed according to the field ground condition. Non-steady state probe methods were conducted in the lab, and ground thermal conductivity and thermal diffusivity were measured for the different soil layers. An equivalent ground thermal conductivity was calculated from the lab test results and it was compared with the field TRT result. The difference was less than 5%, which advocates the use of an equivalent ground thermal conductivity for the multi-layered ground. Furthermore, this paper also represents an equivalent ground thermal diffusivity evaluation method which is another very important design parameter.

Preparation of Nickel Coated-carbon Nanotube/Zinc Oxide Nanocomposites and Their Antimicrobial and Mechanical Properties (니켈 코팅된 탄소나노튜브/산화아연 나노복합소재의 제조와 항균 및 기계적 특성 분석)

  • Kim, Hyeon-Hye;Han, Woong;An, Kay-Hyeok;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.502-507
    • /
    • 2016
  • This study was conducted to develop novel antimicrobial nano-composites, with the aim of fully utilizing antimicrobial properties of multi-walled carbon nanotubes (MWCNTs), nickel (Ni) and zinc oxide (ZnO). Ni coated-MWCNTs (Ni-CNT) were prepared and evaluated for their potential application as an antimicrobial material for inactivating bacteria. Field emission scanning electron microscopy (FE-SEM), and X-ray energy dispersive spectroscopy (EDS) were used to characterize the Ni coating and morphology of Ni-CNT. Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil) were employed as the target bacterium on antimicrobial activities. Comparing with the nitric acid treated MWCNTs and Ni-CNT which have been previously reported to possess antimicrobial activity towards S. aureus and E. coil, Ni-CNT/ZnO exhibited a stronger antimicrobial ability. The nickel coating was confirmed to play an important role in the bactericidal action of Ni-CNTs/ZnO composites. Also, the addition of ZnO to the developed nanocomposite is suggested to improve the antimicrobial property.

Microbial Contamination of Contact lens cases in multi - purpose solution care systems (다목적 용액을 사용하는 콘택트렌즈 관리체계에서 렌즈 보관용기의 미생물 오염)

  • Kim, Sang-Moon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.95-99
    • /
    • 2000
  • The microbial contamination rate of contact lens cases in multi-purpose solution(MPS) care systems of 80 asymptomatic soft contact lens wearers was investigated. In caring for their lenses 72 patients (90%) used chemical disinfection(include MPS), six patients(7%) used hydrogen peroxide, and two patients(3%) used heat. Fifty-nine percent of patients used MPS in their care systems. Of 80 contact lens cases, contamination was found in 68%(54) of cases. There is a significant relationship between the ages of lens cases and contamination: older cases being more frequently contaminated. Of the contaminated 31 lens cases(57%) in MPS care systems, four contact lens cases(13%) were contaminated by single organism, 15 cases(48%) by two kinds of organisms, and 12 cases(39%) by more than three kinds of organisms. Of the organisms that were contaminated lens cases, Pseudomonas. Serratia, Bacillus, E. coli and Aspergillus were frequently isolated. When considering the high contamination rate of soft contact lens cases in MPS care systems more effective and hygienical lens care system is important, especially frequent and regular disposal of lens cases may prove to prevent the build-up of microbial colonisation in containers.

  • PDF

Construction of Low Magnetic Standard System using a Multi-layer Solenoid with Single-current (단전류-다층 솔레노이드 방법을 사용한 저자장 표준시스템 제작)

  • 박포규;김영균
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.1
    • /
    • pp.38-44
    • /
    • 2001
  • The magnetic field standard below 1 mT with the resolution of 0.26 nT has been established. Earth magnetic field (EMF) is compensated automatically down to 0.1 nT/10 min. by a closed feedback system with Cs optical pumping magnetometer and 3-axis Helmholtz coils in nonmagnetic facilities. A multi-layer precision solenoid with the optimized single-current method generates the uniform magnetic field better than 1.0$\times$10$\^$-7/ within $\pm$ 1 cm region at its center. The coil constant of solenoid determined from Helium optical pumping magnetometer is 1.231 058 9 mT/A, and temperature coefficient is 0.38 nT/$\^{C}$. This standard system is used for calibration of low field magnetometers and testing relates to low field.

  • PDF

The Development of Ultrasonic Motor-Digital Multi Controller using FPGA (FPGA를 이용한 초음파 모터 구동용 디지털 다중 제어기 개발)

  • Kim, Dong-Ok;Kim, Young-Dong;Oh, Geum-Kon;Jung, Gook-Young;Jun, Chan-Ju;Ryu, Jae-Min
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.187-190
    • /
    • 2002
  • In contrast to conventional electromagnetic motor, USM(Ultrasonic Motor), as piezoelectric ceramic applying ultrasonic mechanical vibration and as frictional-movement type motor, get rotational torque by elastic friction between stator and rotator, The USM, which is small motor without iron cores and coil as a simple structure, has little load weight, has character of high torque at low speed, and can apply a direct drive type without deceleration gear as low speed type. A response of USM from control input is satisfactory, and also generates much torque in low speed driving, and holding torque is much without supplying power. In this study, I designed and made Ultrasonic motor-digital multi controller(USM- DMC) using FPGA chip, A54SX72A made in Actel Corporation. By the minute, USM-DMC can control frequency, duty ratio, and phase difference of USM by llbit digital input from Pc. Therefore, when we use this controller, we can apply to typical parameter, frequency, phase difference, and voltage parameter, to control as well as we can do mixing control like phase-frequency, phase-voltage, frequency-voltage, frequency-phase-voltage, What is more, the strongest point is that it can trace frequency based on optimized frequency because we can input optimized resonant frequency while in motoring.

  • PDF

Cooling Characteristic Analysis of Transformer's Radiator (변압기 냉각 특성 해석)

  • Kim, Hyun-Jae;Yang, Si-Won;Kim, Won-Seok;Kweon, Ki-Yeoung;Lee, Min-Jea
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1920-1925
    • /
    • 2007
  • A transformer is a device that changes the current and voltage by electricity induced between coil and core steel, and it is composed of metals and insulating materials. In the core of the transformer, the thermal load is generated by electric loss and the high temperature can make the break of insulating. So we must cool down the temperature of transformer by external radiators. According to cooling fan's usage, there are two cooling types, OA(Oil Natural Air Natural) and FA(Oil Natural Air Forced). For this study, we used Fluent 6.2 and analyzed the cooling characteristic of radiator. we calculated 1-fin of detail modeling that is similar to honeycomb structure and multi-fin(18-fin) calculation for OA and FA types. For the sensitivity study, we have different positions(side, under) of cooling fans for forced convection of FA type. The calculation results were compared with the measurement data which obtained from 135.45/69kV ultra transformer flowrate and temperature test. The aim of the study is to assess the Fluent code prediction on the radiator calculation and to use the data for optimizing transformer radiator design.

  • PDF