• 제목/요약/키워드: Multi-Channel Internet Radio

검색결과 31건 처리시간 0.019초

Multi-Channel Internet Radio Platform에 대한 연구 (A Study of Multi-Channel Internet Radio Platform)

  • 김종덕;김영길
    • 한국정보통신학회논문지
    • /
    • 제14권7호
    • /
    • pp.1723-1728
    • /
    • 2010
  • 본 논문에서는 뮤직 콘텐츠의 무분별한 사용의 피해를 줄이고 대형 매장과 임의의 공간과 공간사이 다른 콘텐츠를 서비스 할 수 있는 Multi-Channel Internet Radio Platform 에 대해 설계 방안을 제공하고 구현 연구를 진행한다. 본 플랫폼은 Multi-Channel Connection을 위한 Application 설계방법과 그에 따른 Multi Stream을 위한 Hardware Path를 구현하는 방법 제안 및 구현 결과를 제공한다.

Multi-Streaming Internet Radio Platform 설계방안에 대한 연구 (A Study of Method Multi-Streaming Internet Radio Platform Design Method)

  • 김종덕;김영길
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.105-107
    • /
    • 2009
  • 본 논문에서는 대형 매장 혹은 임의의 공간과 공간사이에 다른 뮤직콘텐츠를 필요로 할 때 이를 해결해 줄 수 있는 멀티 스트리밍 플랫폼에 대해 연구한다. 사용자의 인터넷 사용을 겸하기 위해 NAT를 구성하고, Multi-Channel Connection을 위한 Application 설계방법과 그에 따른 Multi Stream을 위한 Hardware Path를 구현하는 방법을 제안한다.

  • PDF

Cluster-based Cooperative Data Forwarding with Multi-radio Multi-channel for Multi-flow Wireless Networks

  • Aung, Cherry Ye;Ali, G.G. Md. Nawaz;Chong, Peter Han Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권12호
    • /
    • pp.5149-5173
    • /
    • 2016
  • Cooperative forwarding has shown a substantial network performance improvement compared to traditional routing in multi-hop wireless network. To further enhance the system throughput, especially in the presence of highly congested multiple cross traffic flows, a promising way is to incorporate the multi-radio multi-channel (MRMC) capability into cooperative forwarding. However, it requires to jointly address multiple issues. These include radio-channel assignment, routing metric computation, candidate relay set selection, candidate relay prioritization, data broadcasting over multi-radio multi-channel, and best relay selection using a coordination scheme. In this paper, we propose a simple and efficient cluster-based cooperative data forwarding (CCDF) which jointly addresses all these issues. We study the performance impact when the same candidate relay set is being used for multiple cross traffic flows in the network. The network simulation shows that the CCDF with MRMC not only retains the advantage of receiver diversity in cooperative forwarding but also minimizes the interference, which therefore further enhances the system throughput for the network with multiple cross traffic flows.

ISRMC-MAC: Implementable Single-Radio, Multi-Channel MAC Protocol for WBANs

  • Cho, Kunryun;Jeon, Seokhee;Cho, Jinsung;Lee, Ben
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1052-1070
    • /
    • 2016
  • Wireless Body Area Networks (WBANs) have received a lot of attention as a promising technology for medical and healthcare applications. A WBAN should guarantee energy efficiency, data reliability, and low data latency because it uses tiny sensors that have limited energy and deals with medical data that needs to be timely and correctly transferred. To satisfy this requirement, many multi-radio multi-channel MAC protocols have been proposed, but these cannot be implemented on current off-the-shelf sensor nodes because they do not support multi-radio transceivers. Thus, recently single-radio multi-channel MAC protocols have been proposed; however, these methods are energy inefficient due to data duplication. This paper proposes a TDMA-based single-radio, multi-channel MAC protocol that uses the Unbalanced Star+Mesh topology to satisfy the requirements of WBANs. Our analytical analysis together experiments using real sensor nodes show that the proposed protocol outperforms existing methods in terms of energy efficiency, reliability, and low data latency.

Traffic Flow Estimation based Channel Assignment for Wireless Mesh Networks

  • Pak, Woo-Guil;Bahk, Sae-Woong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권1호
    • /
    • pp.68-82
    • /
    • 2011
  • Wireless mesh networks (WMNs) provide high-speed backbone networks without any wired cable. Many researchers have tried to increase network throughput by using multi-channel and multi-radio interfaces. A multi-radio multi-channel WMN requires channel assignment algorithm to decide the number of channels needed for each link. Since the channel assignment affects routing and interference directly, it is a critical component for enhancing network performance. However, the optimal channel assignment is known as a NP complete problem. For high performance, most of previous works assign channels in a centralized manner but they are limited in being applied for dynamic network environments. In this paper, we propose a simple flow estimation algorithm and a hybrid channel assignment algorithm. Our flow estimation algorithm obtains aggregated flow rate information between routers by packet sampling, thereby achieving high scalability. Our hybrid channel assignment algorithm initially assigns channels in a centralized manner first, and runs in a distributed manner to adjust channel assignment when notable traffic changes are detected. This approach provides high scalability and high performance compared with existing algorithms, and they are confirmed through extensive performance evaluations.

Channel Allocation in Multi-radio Multi-channel Wireless Mesh Networks: A Categorized Survey

  • Iqbal, Saleem;Abdullah, Abdul Hanan;Hussain, Khalid;Ahsan, Faraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1642-1661
    • /
    • 2015
  • Wireless mesh networks are a special type of broadcast networks which cover the qualifications of both ad-hoc as well as infrastructure mode networks. These networks offer connectivity to the last mile through hop to hop communication and by comparatively reducing the cost of infrastructure in terms of wire and hardware. Channel assignment has always been the focused area for such networks specifically when using non-overlapping channels and sharing radio frequency spectrum while using multiple radios. It has always been a challenge for mesh network on impartial utilization of the resources (channels), with the increase in users. The rational utilization of multiple channels and multiple radios, not only increases the overall throughput, capacity and scalability, but also creates significant complexities for channel assignment methods. For a better understanding of research challenges, this paper discusses heuristic methods, measurements and channel utilization applications and also examines various researches that yield to overcome this problem. Finally, we highlight prospective directions of research.

Cooperative Incumbent System Protection MAC Protocol for Multi-channel Ad-hoc Cognitive Radio Networks

  • Yi, Ke;Hao, Nan;Yoo, Sang-Jo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권11호
    • /
    • pp.1976-1996
    • /
    • 2011
  • Cognitive radio (CR) MAC protocol provides access control of unused spectrum resources without causing interference to primary users. To achieve this goal, in this paper a TDMA based cooperative multi-channel cognitive radio MAC (MCR-MAC) protocol is proposed for wireless ad hoc networks to provide reliable protection for primary users by achieving cooperative detection of incumbent system signals around the communication pair. Each CR node maintains transmission opportunity schedules and a list of available channels that is employed in the neighbor discovery period. To avoid possible signal collision between incumbent systems and cognitive radio ad hoc users, we propose a simple but efficient emergency notification message exchanging mechanism between neighbor CR nodes with little overhead. Our simulation results show that the proposed MCR-MAC can greatly reduce interference with primary users and remarkably improve the network throughput.

Channel Allocation Strategies for Interference-Free Multicast in Multi-Channel Multi-Radio Wireless Mesh Networks

  • Yang, Wen-Lin;Hong, Wan-Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권2호
    • /
    • pp.629-648
    • /
    • 2012
  • Given a video stream delivering system deployed on a multicast tree, which is embedded in a multi-channel multi-radio wireless mesh network, our problem is concerned about how to allocate interference-free channels to tree links and maximize the number of serviced mesh clients at the same time. In this paper, we propose a channel allocation heuristic algorithm based on best-first search and backtracking techniques. The experimental results show that our BFB based CA algorithm outperforms previous methods such as DFS and BFS based CA methods. This superiority is due to the backtracking technique used in BFB approach. It allows previous channel-allocated links to have feasibility to select the other eligible channels when no conflict-free channel can be found for the current link during the CA process. In addition to that, we also propose a tree refinement method to enhance the quality of channel-allocated trees by adding uncovered destinations at the cost of deletion of some covered destinations. Our aim of this refinement is to increase the number of serviced mesh clients. According to our simulation results, it is proved to be an effective method for improving multicast trees produced by BFB, BFS and DFS CA algorithms.

802.11p 기반 다중 라디오 다중채널 네트워크 환경에서 안전 메시지 전송을 위한 내쉬 협상 해법을 이용한 채널할당 (Channel assignment for 802.11p-based multi-radio multi-channel networks considering beacon message dissemination using Nash bargaining solution)

  • 권영호;이병호
    • 인터넷정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.63-69
    • /
    • 2014
  • IEEE 802.11p 차량 네트워크 환경 (WAVE)에서는 차량 운전자의 안전을 위해서 주기적으로 안전 메시지를 전송하도록 되어 있다. 차량 안전 메시지의 전송을 통해 도로상의 안전과 주행 효율을 제공하기 위해서 WAVE 표준에서는 멀티 채널 멀티 라디오 환경을 제안하고 있다. 그러나 WAVE 표준안은 안전메세지를 하나의 물리 디바이스에 하나의 채널을 이용하여 제어하고 전송하는 것으로 정의되어 있어서 다중 라디오 환경과 안전 메시지 전송 효율성을 고려하지 않았다. 또한 네트워크 무선상에서 서로 충돌이 일어나지 않는 채널을 할당하는 채널 할당은 네트워크 망구성방식을 잘 알고 있거나 모든 노드들이 같은 전송률을 가지는 무선 대역에 있어도 NP-hard한 문제로 잘 알려져 있다. 본 논문에서는 최신 802.11p와 1609.4 802.11p 표준을 이용해서 다중 채널 다중 라디오 WAVE 환경을 무선 메쉬 네트워크로 가정하여 Nash 협상 게임을 통해서 서로 간섭이 없는 채널을 할당하는 방법을 제안하고자 한다. 본 제안된 알고리즘은 시뮬레이션을 통해서 검증하였고 해당 알고리즘이 8채널 3 라디오 환경에서 랜덤 채널 할당 방법이나 Tabu 알고리즘 보다 효율성이 좋다는 것을 입증하였다.

MMSE Transmit Optimization for Multiuser Multiple-Input Single-Output Broadcasting Channels in Cognitive Radio Networks

  • Cao, Huijin;Lu, Yanhui;Cai, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권9호
    • /
    • pp.2120-2133
    • /
    • 2013
  • In this paper, we address the problem of linear minimum mean-squared error (MMSE) transmitter design for the cognitive radio (CR) multi-user multiple-input single-output (MU-MISO) broadcasting channel (BC), where the cognitive users are subject to not only a sum power constraint, but also a interference power constraint. Evidently, this multi-constraint problem renders it difficult to solve. To overcome this difficulty, we firstly transform it into its equivalent formulation with a single constraint. Then by utilizing BC-MAC duality, the problem of BC transmitter design can be solved by focusing on a dual MAC problem, which is easier to deal with due to its convexity property. Finally we propose an efficient two-level iterative algorithm to search the optimal solution. Our simulation results are provided to corroborate the effectiveness of the proposed algorithm and show that this proposed CR MMSE-based scheme achieves a suboptimal sum-rate performance compared to the optimal DPC-based algorithm with less computational complexity.