DOI QR코드

DOI QR Code

Channel assignment for 802.11p-based multi-radio multi-channel networks considering beacon message dissemination using Nash bargaining solution

802.11p 기반 다중 라디오 다중채널 네트워크 환경에서 안전 메시지 전송을 위한 내쉬 협상 해법을 이용한 채널할당

  • Kwon, Yong-Ho (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Rhee, Byung-Ho (Department of Computer Science and Engineering, Hanyang University)
  • Received : 2013.12.27
  • Accepted : 2014.04.03
  • Published : 2014.06.30

Abstract

For the safety messages in IEEE 802.11p vehicles network environment(WAVE), strict periodic beacon broadcasting requires status advertisement to assist the driver for safety. WAVE standards apply multiple radios and multiple channels to provide open public road safety services and improve the comfort and efficiency of driving. Although WAVE standards have been proposed multi-channel multi-radio, the standards neither consider the WAVE multi-radio environment nor its effect on the beacon broadcasting. Most of beacon broadcasting is designed to be delivered on only one physical device and one control channel by the WAVE standard. also conflict-free channel assignment of the fewest channels to a given set of radio nodes without causing collision is NP-hard, even with the knowledge of the network topology and all nodes have the same transmission radio. Based on the latest standard IEEE 802.11p and IEEE 1609.4, this paper proposes an interference aware-based channel assignment algorithm with Nash bargaining solution that minimizes interference and increases throughput with wireless mesh network, which is deigned for multi-radio multi-cahnnel structure of WAVE. The proposed algorithm is validated against numerical simulation results and results show that our proposed algorithm is improvements on 8 channels with 3 radios compared to Tabu and random channel allocation algorithm.

IEEE 802.11p 차량 네트워크 환경 (WAVE)에서는 차량 운전자의 안전을 위해서 주기적으로 안전 메시지를 전송하도록 되어 있다. 차량 안전 메시지의 전송을 통해 도로상의 안전과 주행 효율을 제공하기 위해서 WAVE 표준에서는 멀티 채널 멀티 라디오 환경을 제안하고 있다. 그러나 WAVE 표준안은 안전메세지를 하나의 물리 디바이스에 하나의 채널을 이용하여 제어하고 전송하는 것으로 정의되어 있어서 다중 라디오 환경과 안전 메시지 전송 효율성을 고려하지 않았다. 또한 네트워크 무선상에서 서로 충돌이 일어나지 않는 채널을 할당하는 채널 할당은 네트워크 망구성방식을 잘 알고 있거나 모든 노드들이 같은 전송률을 가지는 무선 대역에 있어도 NP-hard한 문제로 잘 알려져 있다. 본 논문에서는 최신 802.11p와 1609.4 802.11p 표준을 이용해서 다중 채널 다중 라디오 WAVE 환경을 무선 메쉬 네트워크로 가정하여 Nash 협상 게임을 통해서 서로 간섭이 없는 채널을 할당하는 방법을 제안하고자 한다. 본 제안된 알고리즘은 시뮬레이션을 통해서 검증하였고 해당 알고리즘이 8채널 3 라디오 환경에서 랜덤 채널 할당 방법이나 Tabu 알고리즘 보다 효율성이 좋다는 것을 입증하였다.

Keywords

References

  1. IEEE, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 6: Wireless Access in Vehicular Environments, IEEE Std. 802.11p-2010, 2010.
  2. IEEE, IEEE Standard for Wireless Access in Vehicular Environments (WAVE)-Networking Services, IEEE Std. 1609.3-2010, 2010.
  3. IEEE, IEEE Standard for Wireless Access in Vehicular Environments (WAVE)-Multi-channel Operation, IEEE Std. 1609.4-2010, 2010.
  4. F. Bai and H. Krishnan, "Reliability analysis of DSRC wireless communication for vehicle safety applications", In Proc. IEEE Intell. Transportation Syst. Conf. (ITSC), pp. 355-362, Toronto, Canada, Sep. 2006.
  5. M. A. C. Lima, A. F. R. Araujo, and A. C. Cesar, "Adaptive genetic Algorithms for Dynamic Channel Assignment in Mobile Cellular Communication Systems," IEEE Trans. Veh. Technol, vol.56, no.5, pp.2685-2696, Sept. 2007. https://doi.org/10.1109/TVT.2007.898411
  6. S. Pinagapany and A.V. Kulkarni, "Solving Channel Allocation Problem in Cellular Radio Networks using Genetic Algorithm," IEEE COMSWARE, pp.239-244, Jan. 2008.
  7. Chong Han; Dianati, M., Tafazolli, R., Xing Liu, Xuemin Shen, "A Novel Distributed Asynchronous Multichannel MAC Scheme for Large-Scale Vehicular Ad Hoc Networks", Vehicular Technology, IEEE Transactions on, vol. 61, Issue: 7, pp.3125-3138 Sept. 2012 https://doi.org/10.1109/TVT.2012.2205596
  8. YongHo Kwon and Byung Ho Rhee, "A Stability of p-persistent MAC scheme for periodic safety messages with a Bayesian game model," KICS, vol.38B, no. 7, pp.543-552, 2013 https://doi.org/10.7840/kics.2013.38B.7.543
  9. J. Nash, "The bargaining problem," Econometrica , vol. 18, pp. 155-62, April, 1950 https://doi.org/10.2307/1907266
  10. Jain, K., Padhye, J., Padmanabhan, V., Qiu, L.: "Impact of Interference on Multi-hop Wireless Network Performance", In 9th ACM Annual International Conference on Mobile Computing and Networking (MobiCom), pp. 66-80, 2003
  11. A. Leshem and E. Zehavi, "Cooperative game theory and the Gaussian interference channel," IEEE J. Select. Areas Commun., vol. 26, no. 7, pp. 1078-1088, Sept. 2008. https://doi.org/10.1109/JSAC.2008.080906
  12. A. P. Subramanian, H. Gupta, and S. R. Das. "Minimum interference channel assignment in multi-radio wireless mesh networks," In Sensor, Mesh and Ad Hoc Communications and Networks, SECON '07. 4th Annual IEEE Communications Society Conference on, pages 481-490, San Diego, CA, 2007
  13. A. P. Subramanian, H. Gupta, S. R. Das, and J. Cao, "Minimum interference channel assignment in multiradio wireless mesh networks," IEEE Transactions on Mobile Computing, vol. 7, no. 12, pp. 1459-1473, 2008. https://doi.org/10.1109/TMC.2008.70
  14. S. Makram and M. Gunes, "Distributed Channel Assignment for Multi-Radio Wireless Mesh-Networks," in Proceedings of IEEE Symposium on Computers and Communications (ISCC'08). Marrakech, Morocco: IEEE Computer Society Press, 2008.
  15. Y. Bi, K.-H. Liu, L. Cai, X. Shen, and H. Zhao, "A multi-channel token ring protocol for QoS provisioning in inter-vehicle communications," IEEE Transactions on Wireless Communications, vol. 8, no. 11, pp. 5621-5631, 2009. https://doi.org/10.1109/TWC.2009.081651
  16. Y. Zang, L. Stibor, B. Walke, H.-J.Reumerman, and A. Barroso, "Towards broadband vehicular ad-hoc networks-the vehicular mesh network (vmesh) mac protocol," in IEEE Wireless Communications and Networking Conference (WCNC) 2007, vol. 2, pp. 417-422, 2007.
  17. Z. Zhang , J. Shi , H.-H. Chen , M. Guizani and P. Qiu "A cooperation strategy based on Nash bargaining solution in cooperative relay networks" IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2570-2577, 2008 https://doi.org/10.1109/TVT.2007.912960
  18. Z. Han, Z. Ji, and K. J. R. Liu, "Low-complexity OFDMA channel allocation with Nash bargaining solution fairness" Proc. IEEE Globecom, vol. 6 , pp. 3726-3731, 2004
  19. H. Boche and M. Schubert "Nash bargaining and proportional fairness for wireless systems" IEEE/ACM Trans. Network, vol. 17, no. 5, pp. 1453-1466, 2009 https://doi.org/10.1109/TNET.2009.2026645