• Title/Summary/Keyword: Multi-Camera System

Search Result 470, Processing Time 0.026 seconds

Research for Calibration and Correction of Multi-Spectral Aerial Photographing System(PKNU 3) (다중분광 항공촬영 시스템(PKNU 3) 검정 및 보정에 관한 연구)

  • Lee, Eun Kyung;Choi, Chul Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.143-154
    • /
    • 2004
  • The researchers, who seek geological and environmental information, depend on the remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, the adverse weather conditions and the expensive equipment can restrict that the researcher can collect their data anywhere and any time. To allow for better flexibility, we have developed a compact, a multi-spectral automatic Aerial photographic system(PKNU 2). This system's Multi-spectral camera can catch the visible(RGB) and infrared(NIR) bands($3032{\times}2008$ pixels) image. Visible and infrared bands images were obtained from each camera respectively and produced Color-infrared composite images to be analyzed in the purpose of the environment monitor but that was not very good data. Moreover, it has a demerit that the stereoscopic overlap area is not satisfied with 60% due to the 12s storage time of each data, while it was possible that PKNU 2 system photographed photos of great capacity. Therefore, we have been developing the advanced PKNU 2(PKNU 3) that consists of color-infrared spectral camera can photograph the visible and near infrared bands data using one sensor at once, thermal infrared camera, two of 40 G computers to store images, and MPEG board to compress and transfer data to the computer at the real time and can attach and detach itself to a helicopter. Verification and calibration of each sensor(REDLAKE MS 4000, Raytheon IRPro) were conducted before we took the aerial photographs for obtaining more valuable data. Corrections for the spectral characteristics and radial lens distortions of sensor were carried out.

  • PDF

Multi Cultivation Remote-Control System(MCRS) for Crops Through Characteristics of Multi-Safe Sensors (다중 안전센서 특성을 이용한 다중재배 원격제어장치)

  • Kim, Jong-Man;Cho, Ja-Yong;Seo, Beom-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.619-622
    • /
    • 2009
  • Multi Cultivation Remote-control System(MCRS) for crpos through characteristics of multi-safe sensors was realized. It was carried out to investigate into the effect of LED Control with the physiological activity of crops(for examples, sprouts). We have also composed a Combined Automatic Control System possible for the control of temperature and humidity at the same time. The applied multi-safe sensors for measurement are blue, green, red, white, yellow leds and humidity sensors, web camera sensors under safe conditions for crops cultivation. And we producted the remote control OS using Linux and defined the characteristics of automatic control about sprouts.

MULTI-CHANNEL REMOTE SENSING CCD CONTROLLER DESING WITH MULTIPLEXING CONCEPT

  • Han, Won-Yong;Yoo, Sang-Keum;Kim, Byung-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.54-65
    • /
    • 1995
  • We present a design study for a remote sensing camera system which can be operated in multi-channel mode simultaneously with several bandpass filters. The camera control electronics is based on the multiplexed driving concept, which can provide a variety of flexibility for system control parameters and its individual optimisation. The design can also be applied to any system with linear sensors or frame sensors according to its functional requirements. The system design parameters have been examined, including modification of driving waveforms for different types of sensors, waveforms for low-nosie readout circuit in analog chain, and synchronisation with other signal processing.

  • PDF

A Study on Three-Dimensional Motion Tracking Technique for Floating Structures Using Digital Image Processing (디지털 화상처리를 이용한 부유식 구조물의 3차원운동 계측법에 관한 연구)

  • Jo, Hyo-Je;Do, Deok-Hui
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.121-129
    • /
    • 1998
  • A quantitative non-contact multi-point measurement system is proposed to the measurement of three-dimensional movement of floating vessels by using digital image processing. The instantaneous three-dimensional movement of a floating structure which is floating in a small water tank is measured by this system and its three-dimensional movement is reconstructed by the measurement results. The validity of this system is verified by position identification for spatially distributed known positional values of basic landmarks set for the camera calibration. It is expected that this system is applicable to the non-contact measurement for an unsteady physical phenomenon especially for the measurement of three-dimensional movement of floating vessels in the laboratory model test.

  • PDF

Accuracy of Close-Range Industrial Photogrammetry Using CCTV Type CCD Camera (CCTV유형 CCD 카메라를 이용한 근거리 산업사진측량의 정확도)

  • 이진덕;최용진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.3
    • /
    • pp.283-290
    • /
    • 2001
  • This paper demonstrates the performance of industrial precise measurement using the digital close-range photograrmmetric system based on a off-the-shelf CCTV-type CCD camera. The system was constructed with a CCD camera and a PC with a frame grabber, coupled with digital image mensuration and self-calibrating bundle adjustment techniques. An artificial fish reef with cubic shape was taken as an object for the application test of the system and the digital images were acquired on multi-station convergent network around the object. The geometric calibration of the CCD camera and the phototriangulation of the entire surface of the object was carried out simultaneously by means of self-calibrating bundle adjustment technique. Also the system comprising a high resolution still-video camera Kodak DCS, which high accuracy potential has been already established, were employed in similar network condition. Then the results from two different camera systems were compared in the accuracies of phototriangulation.

  • PDF

A study on the transformation of EO parameters using Boresight calibration (Boresight calibration을 이용한 외부표정요소 산출에 관한 연구)

  • 박수영;윤여상;김준철;정주권;주영은
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.129-134
    • /
    • 2003
  • Mobile Mapping System needs system calibration of multi sensors. System calibration is defined as determination of spatial and rotational offsets between the sensors. Especially, EO parameters of GPS/INS require knowledge of the calibration to camera frame. The calibration parameters must be determined with the highest achievable accuracy in order to get 3D coordinate points in stereo CCD images. This study applies Boresight calibration for the calibration between GPS/INS and camera, and estimates the Performance of the calibration.

  • PDF

The implementation of interface between industrial PC and PLC for multi-camera vision systems (멀티카메라 비전시스템을 위한 산업용 PC와 PLC간 제어 방법 개발)

  • Kim, Hyun Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.453-458
    • /
    • 2016
  • One of the most common applications of machine vision is quality inspections in automated production. In this study, a welding inspection system that is controlled by a PC and a PLC equipped with a multi-camera setup was developed. The system was designed to measure the primary dimensions, such as the length and width of the welding areas. The TCP/IP protocols and multi-threading techniques were used for parallel control of the optical components and physical distribution. A coaxial light was used to maintain uniform lighting conditions and enhance the image quality of the weld areas. The core image processing system was established through a combination of various algorithms from the OpenCV library. The proposed vision inspection system was fully validated for an actual weld production line and was shown to satisfy the functional and performance requirements.

Study of the Parallax Error of a Robotic Camera for Obtaining Ultrahigh-resolution Gigapixel Digital Images (초고해상도의 기가픽셀 디지털이미지 획득을 위한 로봇 카메라의 시차연구)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.26-30
    • /
    • 2020
  • First, if we want to design and construct a robotic camera, we need to understand the parallax errors between adjacent images, caused by rotation and movement of the robotic camera system. In this paper, we try to derive the mathematical formulation of parallax error and connect it to a conventional lens system, to obtain a useful, generalized, analytic algebraic expression for the parallax error. Utilizing this expression, we can structurally design a robotic camera, and study the Google ART camera as an example of a robotic camera.

3D Depth Measurement System based on Parameter Calibration of the Mu1ti-Sensors (실거리 파라미터 교정식 복합센서 기반 3차원 거리측정 시스템)

  • Kim, Jong-Man;Kim, Won-Sop;Hwang, Jong-Sun;Kim, Yeong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.125-129
    • /
    • 2006
  • The analysis of the depth measurement system with multi-sensors (laser, camera, mirror) has been done and the parameter calibration technique has been proposed. In the proposed depth measurement system, the laser beam is reflected to the object by the rotating mirror and again the position of the laser beam is observed through the same mirror by the camera. The depth of the object pointed by the laser beam is computed depending on the pixel position on the CCD. There involved several number of internal and external parameters such as inter-pixel distance, focal length, position and orientation of the system components in the depth measurement error. In this paper, it is shown through the error sensitivity analysis of the parameters that the most important parameters in the sense of error sources are the angle of the laser beam and the inter pixel distance.

  • PDF

Electronic System Design of SRI (Super Resolution Imager) for satellite

  • Park Jong-Euk;Kong Jong-Pil;Heo Haeng-Pal;Kim Young Sun;Youn Heong-Sik;Paik Hong Yul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.483-485
    • /
    • 2004
  • The SRI (Super Resolution Imager) is the development project for the next generation satellite camera. This camera has more high resolution than the present satellite camera. It's used by very accurate observation and other multi-purposes. In this paper, the SRI electronic system is described in terms of H/W (Configuration and Function operation).

  • PDF