• 제목/요약/키워드: Multi layer coating

검색결과 128건 처리시간 0.027초

조미김 포장을 위한 PET/PVA-BA/OPP 다층필름 제조 및 특성분석 (Preparation and Characterization of PET/PVA-BA/OPP Multi-layer Films for Seasoned-laver Packaging)

  • 임미진;김도완;서종철
    • 한국포장학회지
    • /
    • 제23권1호
    • /
    • pp.9-15
    • /
    • 2017
  • 수증기 및 산소에 대한 차단성이 개선된 PVA-BA 코팅 조성액의 포장소재로의 적용가능성을 확인하기 위하여 콤마 코팅과 라미네이션 공정을 이용하여 PET/PVA-BA/OPP 다층필름을 제조하였다. PCT 전 후의 PET/PVA-BA/OPP 다층필름의 기체, 수증기 차단특성 및 인장강도를 확인하였고 이를 PA/PA/EVOH/PP 다층필름의 물성과 비교하였다. PVA내 BA 함량이 증가함에 따라 물성이 증가하는 것을 확인할 수 있었지만, PCT 후 PET/PVA-BA/OPP 다층필름의 산소, 수증기 차단특성 및 인장강도는 감소하는 경향을 보였다. 이는 PVA-BA층 내 증가한 가교밀도와 관련이 있는 것으로 판단된다. 또한, 조미김을 이용한 저장특성분석에서, PET/PVA-BA/OPP다층필름은 PP/Al-metallized PP 다층필름에 비해 조미김의 지방산화를 야기시키는 요인을 효과적으로 억제하는 것으로 판단된다. 하지만, PP/Al-metallized PP 다층필름에 비해 PET/PVA-BA/OPP 다층필름의 상대적으로 높은 수분투과특성 때문에 Aw에 큰 장점을 확인하지 못하였다. 따라서, 물성 극대화 및 포장소재로 적용을 위해서는 PET/PVA-BA/OPP 다층필름 내 수분 차단성 향상에 대한 추가적인 연구가 필요하다는 것을 확인하였다.

PEDOT를 이용한 CRT용 반사방지 및 대전방지 코팅 (An Antireflection and Antistatic Coatings for CRTs using PEDOT)

  • 김태영;김종은;이보현;서광석;김진열
    • 한국전기전자재료학회논문지
    • /
    • 제15권1호
    • /
    • pp.61-66
    • /
    • 2002
  • A method for designing antireflection (AR) and antistatic (AS) coating layer by the use of conducting polymer as an electrically conductive transparent layer is proposed. The conducting AR coating is composed of four-layer with alternating high and low refractive index layer: silicon dioxide (n=1.44) and titanium dioxide (n=2.02) prepared at low temperature by sol-gel method are used as the low and high refractive index layer, respectively. The poly(3,4-ethylenedioxythiophene) which has the surface resistivity of 10$^4$Ω/$\square$ is used as a conductive layer. Optical constant of each ARAS coating layers such as refractive index and optical thickness were measured by 7he spectroscopic ellipsometer and from the measured optical constants the spectral properties such as reflectance and transmittance were simulated in the risible region. The reflectance of ARAS films on glass substrate was below 1 %R and the transmittance was higher than 95 % in the visible wavelength (400-700 nm). The measured AR spectral properties was very similar to its simulated results.

Relationship of the Distribution Thickness of Dielectric Layer on the Nano-Tip Apex and Distribution of Emitted Electrons

  • Al-Qudah, Ala'a M.;Mousa, Marwan S.
    • Applied Microscopy
    • /
    • 제46권3호
    • /
    • pp.155-159
    • /
    • 2016
  • This paper analyses the relationship between the distribution of a dielectric layer on the apex of a metal field electron emitter and the distribution of electron emission. Emitters were prepared by coating a tungsten emitter with a layer of epoxylite resin. A high-resolution scanning electron microscope was used to monitor the emitter profile and measure the coating thickness. Field electron microscope studies of the emission current distribution from these composite emitters (Tungsten-Clark Electromedical Instruments Epoxylite resin [Tungsten/CEI-resin emitter]) have been carried out. Two forms of image have been observed: bright single-spot images, thought to be associated with a smooth substrate and a uniform dielectric layer; and multi-spot images, though to be associated with irregularity in the substrate or the dielectric layer.

고온 액상 성형용 금형 수명 향상을 위한 TiAlCrSiN 코팅의 특성 (Characteristics of TiAlCrSiN coating to improve mold life for high temperature liquid molding)

  • 여기호;박은수;이한찬
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.285-293
    • /
    • 2021
  • High-entropy TiAlCrSiN nano-composite coating was designed to improve mold life for high temperature liquid molding. Alloy design, powder fabrication and single alloying target fabrication for the high-entropy nano-composite coating were carried out. Using the single alloying target, an arc ion plating method was applied to prepare a TiAlCrSiN nano-composite coating had a 30 nm TiAlCrSiN layers are deposited layer by layer, and form about 4 ㎛-thickness of multi-layered coating. TiAlCrSiN nano-composite coating had a high hardness of about 39.9 GPa and a low coefficient of friction of less than about 0.47 in a dry environment. In addition, there was no change in the structure of the coating after the dissolution loss test in the molten metal at a temperature of about 1100 degrees.

고속 화염 용사 공정을 이용한 스위칭 소자용 BCuP-5 filler 금속/Ag 기판 클래드 소재의 제조, 미세조직 및 접합 특성 (Fabrication, Microstructure and Adhesion Properties of BCuP-5 Filler Metal/Ag Plate Clad Material by Using High Velocity Oxygen Fuel Thermal Spray Process)

  • 주연아;조용훈;박재성;이기안
    • 한국분말재료학회지
    • /
    • 제29권3호
    • /
    • pp.226-232
    • /
    • 2022
  • In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 ㎛, and the surface fluctuation is measured as approximately 3.2 ㎛. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.

미끄럼운동 시 TiN 코팅에 형성되는 산화막이 마찰 및 마멸 특성에 미치는 영향 (Effects of Oxide Layer Formed on TiN Coated Silicon Wafer on the Friction and Wear Characteristics in Sliding)

  • 조정우;이영제
    • Tribology and Lubricants
    • /
    • 제18권4호
    • /
    • pp.260-266
    • /
    • 2002
  • In this study, the effects of oxide layer farmed on the wear tracks of TiN coated silicon wafer on friction and wear characteristics were investigated. Silicon wafer was used for the substrate of coated disk specimens, which were prepared by depositing TiN coating with 1 ${\mu}{\textrm}{m}$ in coating thickness. AISI 52100 steel ball was used fur the counterpart. The tests were performed both in air for forming oxide layer on the wear track and in nitrogen to avoid oxidation. This paper reports characterization of the oxide layer effects on friction and wear characteristics using X-ray diffraction(XRD), Auger electron spectroscopy(AES), scanning electron microscopy (SEM) and multi-mode atomic force microscope(AFM).

하이드라진 용액법으로 형성된 CuInSe2 다층 박막 분석 (Characterization of Hydrazine Solution Processed Multi-layered CuInSe2 Thin Films)

  • 정중희
    • 한국표면공학회지
    • /
    • 제48권4호
    • /
    • pp.169-173
    • /
    • 2015
  • $CuInSe_2$ thin films which have been widely used for thin solar cells as a light absorber were prepared by hydrazine solution processing, and their microstructural properties were investigated. Hydrazine $CuInSe_2$ precursor solutions were prepared by dissolving $Cu_2S$, S, $In_2Se_3$ and Se powder in hydrazine solvent. Multilayer $CuInSe_2$ chalcopyrite phase thin films were prepared by repeating spin-coating process using the precursor solution. Unfortunately, the presence of the interfaces between each $CuInSe_2$ layer formed by multi-layer coating impeded grain growth across the interface. Here, by doing simple interface engineering to solve the limited grain growth issue, the large grained (${\sim}1{\mu}m$) $CuInSe_2$ thin films were obtained.

입자 핵연료의 SiC/C 다층 도포층의 미세조직 및 극미세 경도 평가 (Microstructure and Nano-hardness of SiC/C Multi-coated Layers on a Particulate Nuclear Fuel)

  • 최용
    • 한국표면공학회지
    • /
    • 제52권6호
    • /
    • pp.321-325
    • /
    • 2019
  • Triso-type coating layers of silicon carbide and graphite on UO2 paticulate nuclear fuel were prepared by using fluidized bed type chemical vapor deposition and self-propagating high temperature synthesis methods to make a coated nuclear fuel of a power plant for hydrogen mass-production. The source and carrier gases were the mixture of methyltrichlorosilane and propane, and inert argon. Chemical analysis and microstructure observation showed that the coated layers were inner graphite, middle silicon carbide and outer graphite. The elastic modulus and nano-hardness of the silicon carbide layer were 503 [GPa] and 36 [GPa], respectively.

The Effect of Anodizing on the Electrical Properties of ZrO2 Coated Al Foil for High Voltage Capacitor

  • Chen, Fei;Park, Sang-Shik
    • Applied Science and Convergence Technology
    • /
    • 제24권2호
    • /
    • pp.33-40
    • /
    • 2015
  • $ZrO_2$ and Al-Zr composite oxide film was prepared by vacuum assisted sol-gel dip coating method and anodizing. $ZrO_2$ films annealed above $400^{\circ}C$ have tetragonal structure. $ZrO_2$ layers inside etch pits were successfully coated from the $ZrO_2$ sol. The double layer structures of samples were obtained after being anodized at 100 V to 600 V. From the TEM images, it was found that the outer layer was $Al_2O_3$, the inner layer was multi-layer of $ZrO_2$, Al-Zr composite oxide and Al hydrate. The capacitance of $ZrO_2$ coated foil exhibited about 28.3% higher than that of non-coating foil after being anodized at 100 V. The high capacitance of $ZrO_2$ coated foils anodized at 100 V can be attributed to the relatively high percentage of inner layer in total thickness. The electrical properties, such as withstanding voltage and leakage current of coated and non-coated Al foils showed similar values. From the results, $ZrO_2$ and Al-Zr composite oxide is promising to be used as the partial dielectric of high voltage capacitor to increase the capacitance.

다층 기공구조를 갖는 다공성 반응소결 탄화규소 다공체 제조 (Fabrication of Porous Reaction Bonded Silicon Carbide with Multi-Layered Pore Structures)

  • 조경선;김규미;박상환
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.534-539
    • /
    • 2009
  • Reaction Bonded Silicon Carbide(RBSC) has been used for engineering ceramics due to low-temperature fabrication and near-net shape products with excellent structural properties such as thermal shock resistance, corrosion resistance and mechanical strength. Recently, attempts have been made to develop hot gas filter with gradient pore structure by RBSC to overcome weakness of commercial clay-bonded SiC filter such as low fracture toughness and low reliability. In this study a fabrication process of porous RBSC with multi-layer pore structure with gradient pore size was developed. The support layer of the RBSC with multi-layer pore structure was fabricated by conventional Si infiltration process. The intermediate and filter layers consisted of phenolic resin and fine SiC powder were prepared by dip-coating of the support RBSC in slurry of SiC and phenol resin. The temperature of $1550^{\circ}C$ to make Si left in RBSC support layer infiltrate into dip-coated layer to produce SiC by reacting with pyro-carbon from phenol resin.