DOI QR코드

DOI QR Code

The Effect of Anodizing on the Electrical Properties of ZrO2 Coated Al Foil for High Voltage Capacitor

  • Chen, Fei (School of Nano Materials Engineering, Kyungpook National University) ;
  • Park, Sang-Shik (School of Nano Materials Engineering, Kyungpook National University)
  • Received : 2015.02.10
  • Accepted : 2015.02.28
  • Published : 2015.03.30

Abstract

$ZrO_2$ and Al-Zr composite oxide film was prepared by vacuum assisted sol-gel dip coating method and anodizing. $ZrO_2$ films annealed above $400^{\circ}C$ have tetragonal structure. $ZrO_2$ layers inside etch pits were successfully coated from the $ZrO_2$ sol. The double layer structures of samples were obtained after being anodized at 100 V to 600 V. From the TEM images, it was found that the outer layer was $Al_2O_3$, the inner layer was multi-layer of $ZrO_2$, Al-Zr composite oxide and Al hydrate. The capacitance of $ZrO_2$ coated foil exhibited about 28.3% higher than that of non-coating foil after being anodized at 100 V. The high capacitance of $ZrO_2$ coated foils anodized at 100 V can be attributed to the relatively high percentage of inner layer in total thickness. The electrical properties, such as withstanding voltage and leakage current of coated and non-coated Al foils showed similar values. From the results, $ZrO_2$ and Al-Zr composite oxide is promising to be used as the partial dielectric of high voltage capacitor to increase the capacitance.

Keywords

References

  1. R. S. Alwitt, H. Uchi, T. R. Beck, and R. C. Alkire, J. Electrochem. Soc. 131, 13 (1997).
  2. H. Takahashi, and M. Nagayama, Electrochim. Acta 23, 279 (1978). https://doi.org/10.1016/0013-4686(78)85058-0
  3. L. Yao, J. Liu, M. Yu, S. Li, and H. Wu, Trans. Nonferrous Met. Soc. 20, 825 (2010). https://doi.org/10.1016/S1003-6326(09)60221-1
  4. S. Park, and B. Lee, J. Electroceram. 13, 111 (2004). https://doi.org/10.1007/s10832-004-5085-z
  5. K. Watanabe, M. Sakairi, H. Takahashi, K. Takahiro, S. Nagata, and S. Hirai, J. Electrochem. Soc. 148, B473 (2001). https://doi.org/10.1149/1.1408633
  6. Y. Xu, Ceram. Int. 30, 1741 (2004). https://doi.org/10.1016/j.ceramint.2003.12.137
  7. X. Du, and Y. Xu, Surf. Coat. Technol. 202, 1923 (2008). https://doi.org/10.1016/j.surfcoat.2007.08.020
  8. J. Liu, Q. Guo, M. Yu, S. Li, and L. Yao, ECS J. Solid State Sci. Technol. 2(3), N55 (2013). https://doi.org/10.1149/2.007303jss
  9. D. K. Fork, and D. B. Fenner, Appl. Phys. Lett. 57, 1137 (1990). https://doi.org/10.1063/1.104220
  10. R. H. French, S. J. Glass, F. S. Ohuchi, Y. N. Xu, and W. Y. Ching, Phys. Rev. 49, 5133 (1994). https://doi.org/10.1103/PhysRevB.49.5133
  11. M. Shikanai, M. Sakairi, H.Takahashi, and M. Seo, J. Electrochem. Soc. 144(8), 2756 (1997). https://doi.org/10.1149/1.1837892
  12. Z. Feng, J. Chen, R. Zhang, and N. Zhao, Ceram. Int. 38, 3057 (2012). https://doi.org/10.1016/j.ceramint.2011.12.003
  13. K. Watanabe, M. Sakairi, H. Takahashi, S. Hirai, and S. Yamaguchi, J. Electroanal. Chem. 473, 250 (1999). https://doi.org/10.1016/S0022-0728(99)00121-7
  14. F. Chen, and S. S. Park, Sol-gel coating of $ZrO_2$ film in aluminum etch pit and anodizing properties, Kor. J. Mater. Res. 24(5), 259 (2014). https://doi.org/10.3740/MRSK.2014.24.5.259
  15. T. Ivanova, A. Harizanova, T. Koutzarova, N. Krins, and B. Vertruyen, Mater. Sci. Eng. B. 165, 212 (2009). https://doi.org/10.1016/j.mseb.2009.07.013
  16. Y. H. Wang, J. Yang, and J. Z. Wang, Ceram. Int. 34, 1285 (2008). https://doi.org/10.1016/j.ceramint.2007.03.004
  17. T. Kudo and R. S. Alwitt, Electrochim. Acta 23, 341 (1978). https://doi.org/10.1016/0013-4686(78)80072-3
  18. J. Chang, C. Liao, C. Chen, and W. Tsai, J. Electrochem. Soc. 150(6), B266 (2003). https://doi.org/10.1149/1.1570822
  19. J. Chang, C. Lin, C. Liao, C. Chen, and W. Tsai, J. Electrochem. Soc. 151(3), B188 (2004). https://doi.org/10.1149/1.1646140
  20. J. Chen, Z. Feng, M. Jiang, and B. Yang, J. Electroanal. Chem. 590, 26 (2006). https://doi.org/10.1016/j.jelechem.2006.02.016